
Middleware
What it is, and How it Enables
Adapdivity and Dependability

David E. Bakken
School of Electrical Engineering and Computer Science

Washington State University
Pullman, Washington USA

43rd Meeting of IFIP Working Group 10.4
Sal, Cape Verde
January 4, 2003

© 2003 Washington State University Dave Bakken Middleware�2

Context: (Most) Technology Marches On

� Hardware technology�s progress phenomenal in last few
decades
� Moore�s Law

� Metcalf�s Law

� Graphics processing power

� Software technology�s progress is much more spotty
� �Software crisis�

� Yet SW is a large and increasing part of complex apps/systems!

� Apps and systems are rapidly becoming (more) networked
� Oops, distributed software is much harder yet to get right�

� Middleware a promising technology for programability of
distributed systems
� Also fertile grounds for adaptivity and dependability�.

© 2003 Washington State University Dave Bakken Middleware�3

Outline

� Middleware: Definition and Benefits

� Examples of Middleware

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

© 2003 Washington State University Dave Bakken Middleware�4

Why Middleware?
� Middleware == �A layer of software above the operating

system but below the application program that provides
a common programming abstraction across a
distributed system� [Bak03]

� Middleware exists to help manage the complexity and
heterogeneity inherent in distributed systems

� Middleware provides higher-level building blocks
(�abstractions�) for programmers than the OS provides
� Can make code much more portable
� Can make them much more productive
� Can make the resulting code have fewer errors
� Analogy � MW:sockets ≈ HOL:assembler

� Middleware sometimes is informally called �plumbing�
� Connects parts of a distributed application with �data pipes� and

passes data between them

© 2003 Washington State University Dave Bakken Middleware�5

Middleware

Middleware in Context

Distributed
Application

OS Comm. Processing Storage

Distributed
Application

Network

Host 1 Host 2

Middleware

Operating System API

OS Comm. Processing Storage

Operating System API

Middleware API Middleware API

Client Server

© 2003 Washington State University Dave Bakken Middleware�6

Middleware Benefit: Masking Heterogeneity

� Middleware�s programming building blocks mask
heterogeneity
� Makes programmer�s life much easier!!

� Kinds of heterogeneity masked by middleware (MW)
frameworks
� All MW masks heterogeneity in network technology
� All MW masks heterogeneity in host CPU
� Almost all MW masks heterogeneity in operating system (or family

thereof)
� Notable exception: Microsoft middleware (de facto; not de jure or by fiat)

� Almost all MW masks heterogeneity in programming language
� Noteable exception: Java RMI

� Some MW masks heterogeneity in vendor implementations
� CORBA best here

© 2003 Washington State University Dave Bakken Middleware�7

Middleware Benefit: Transparency

� Middleware can provide useful transparencies:
� Distribution Transparency
� Location transparency
� Concurrency transparency
� Replication transparency
� Failure transparency
� Mobility transparency

� Masking heterogeneity and providing transparency makes
programming distributed systems much easier to do!

© 2003 Washington State University Dave Bakken Middleware�8

Programming with Middleware

� Programming with Middleware
� Do not have to learn a new programming language! (Usually)

� Use an existing one already familiar with: C++, Java, C#, Ada,
(yuk) Visual Basic, (yuk) COBOL

� Ways to Program with Middleware
1. Middleware system provides library of functions (Linda, others)

2. Support directly in language from beginning (Java and JVM)

3. External Interface Definition Language (IDL) that �maps� to the
language and generates local �proxy�

© 2003 Washington State University Dave Bakken Middleware�9

Kinds of Middleware

� Distributed Tuples: (a, b, c, d, e)
� Relational databases, SQL, relational algebra

� Linda and tuple spaces

� JavaSpaces (used by Java Jini)

� Remote procedure call (RPC
� make a function call look local even if non-local

� Message-Oriented Middleware (MOM)
� messages and message queues

� Distributed Object Middleware
� Make an object method look local even if non-local

� CORBA

� DCOM/SOAP/.NET

� Java RMI

© 2003 Washington State University Dave Bakken Middleware�10

Kinds of Middlware (cont.)

YesYesYesDistributed
Objects

LimitedNoYesMessage-
Oriented MW

NoYesYesRemote
Procedure Call

YesLimitedYesDistributed
Tuples

StorageProcessingCommunicationMiddleware
Category

Different middleware systems encapsulate and integrate the different
kinds of resources with varying degrees:

For many (non-database) applications, and supporting adaptation,
distributed object middleware is better because it is more general

© 2003 Washington State University Dave Bakken Middleware�11

Middleware and Legacy Systems
� Legacy systems are a huge problem (and asset) in industry

and military domains!

� Middleware often called a �glue� technology: integrated
�legacy� components
� Much distributed programming involves integrating components,

not building them from scratch!

� Middleware�s abstractions are general enough to allow
legacy systems to be �wrapped�
� Distributed objects are best here because more general

� End result: a very high-level �lowest common denominator� of
interoperability

© 2003 Washington State University Dave Bakken Middleware�12

Outline

� Middleware: Definition and Benefits

� Examples of Middleware
� CORBA

� .NET

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

© 2003 Washington State University Dave Bakken Middleware�13

On Commercial Middleware and Research

� Creating a comprehensive, useable MW system is a huge
undertaking, even with no adaptation or dependability

� Many military and industrial organizations require (or at
least attempt) leveraging commercial off-the-shelf (COTS)
MW for economic reasons

� To have impact, IMHO researchers thus need to interact
with COTS MW at some level
� Interoperate with it
� Wrap it
� Add layers above it for adaptation and/or dependability
� Insert layers below it for managing the environment (net mgmt�)
� Evaluate risks of using COTS MW for challenging/critical

domains (space, aviation, military C2, military embedded, �)

I.e., do value-added research to enhance COTS MW apps!

© 2003 Washington State University Dave Bakken Middleware�14

Simplified CORBA Runtime Components

Note: path from stub (a.k.a. proxy) to object is managed by
ORB on behalf of that client-object interaction�

Application
Developer

Mechanism
Developer

CLIENT

Network

operation()
in args

out args + return value

IDL
STUBS

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

C
O

R
B

A
 D

O
C

 M
O

D
E

L

© 2003 Washington State University Dave Bakken Middleware�15

.NET Framework Overview

Operating SystemOperating System

Common Language Specification (CLS)Common Language Specification (CLS)

Common Language Runtime (CLR)Common Language Runtime (CLR)

ADO.NET: Data and XMLADO.NET: Data and XML

VBVB C++C++ C#C#

V
isu

al S
tu

d
io

.N
E

T
V

isu
al S

tu
d

io
.N

E
T

(V
S

.N
E

T
)

(V
S

.N
E

T
)

ASP.NET: Web ServicesASP.NET: Web Services
and Web Formsand Web Forms

JScriptJScript ��

WindowsWindows
FormsForms

(Courtesy of Microsoft)

Notes: 1) CLR ≈ JVM 2) �Hidden� stuff via VS.NET

© 2003 Washington State University Dave Bakken Middleware�16

.NET Framework Overview

VBVB C#C#

MSILMSIL MSILMSIL

DifferentDifferent

Same ILSame IL

CompileCompile

LanguagesLanguages

DeployDeploy

MSILMSIL
Machine Machine

CodeCodeJITJIT

RunRun

CompileCompile

(Courtesy of Microsoft)

© 2003 Washington State University Dave Bakken Middleware�17

Outline

� Middleware: Definition and Benefits

� Examples of Middleware

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

© 2003 Washington State University Dave Bakken Middleware�18

Application-Level Adaptation Choices

� How can distributed applications (including the middleware
that supports them) become more predictable and adapt to
changing system conditions?
� Control and Reserve Resources

� Utilize alternate Resources (redundancy)

� Use an alternate mechanism (with different system properties, i.e.
tradeoffs between storage and processing and communications)

� Take longer
� reschedule for later

� tolerate finishing later than originally expected

� Do less
� lower precision

� lower accuracy

� smaller quantity

© 2003 Washington State University Dave Bakken Middleware�19

Application-Level Adaptation Choices (cont.)
� Note the multiple possible layers of adaptation:

� Client application

� Above the ORB core on client-side

� Inside the ORB (if has hooks)

� In the network (via �gateway�, bandwidth management)

� Above the ORB core on server-side

� Server application

� Adaptation can occur
� in-band: triggered synchronously to an invocation

� out-of-band: triggered asynchronously, not by any invocation

� Premise: supporting all the above choices is helpful!
� Need help from the application in choosing right tradeoffs

� Need lots of help from the middleware to keep the application�s
job simple and high-level (�Awareness without Pain�)

© 2003 Washington State University Dave Bakken Middleware�20

Middleware and Adaptivity

� Why is middleware helpful/useful for adaptation?

� High enough level to capture application�s structure (nicely
encapsulated objects/components and their interactions)

� Lots of ways middleware can implement its high-level
abstraction
� Reflection-based adaptation a useful way to organize this [Cou02]

� Aspect-Oriented Programming and variants/mutants also help

� Multi-layered middleware (later slides�)

© 2003 Washington State University Dave Bakken Middleware�21

ORB core

CORBA System Builders� Hooks

Standard Interfaces
ORB-Specific

IDL-generated

Interface
Repository

IDL Compiler
Implementation

Repository

Client

Stub/proxy
(SII)

Dynamic
Invoc. I.(DII)

ORB
Interface

Servant

Dynamic
Skel. I.(DSI)

SkeletonORB
Interface

Object Adaptor

 Smart Stub

ORB core
Interceptor

(Courtesy of S. Yajnik)

Interceptor

Interceptor

Interceptor

Appl. Programmable

Note: IMHO few middleware systems give so many hooks�. for adaptation, QoS, �

© 2003 Washington State University Dave Bakken Middleware�22

Quality Objects (QuO) Adaptation Example

� QuO 2.0 in a nutshell
� Delegate: adaptive stubs
� Contract: specify level of QoS

desired and regions of operation
� SysCond: way to plug in status

info into contract or control
mechanisms from contract

� See [Quo02] for more info

� QuO and Adaptation
� QuO supports adaptation at many

layers, locations, etc.
� Delegate adaptation: first hard-

coded, later SDL added when
patterns became clear

� Contracts: first simple region
language, then FSA, others later

CLIENT

Delegate
Contract

SysCond

Contract

Network

MECHANISM/PROPERTY
MANAGER

operation()
in args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

Application
Developer

QoS
Developer

Mechanism
DeveloperQ

U
O

/C
O

R
B

A
 D

O
C

 M
O

D
E

L

(Courtesy of BBN)

© 2003 Washington State University Dave Bakken Middleware�23

Outline

� Middleware: Definition and Benefits

� Examples of Middleware

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

© 2003 Washington State University Dave Bakken Middleware�24

On Layers and Middleware

� Discussion issue for panel: make one middleware
framework do all, or layer to (re)use others� middleware???

� Grist for panel discussion:
� �What is it about distribution that requires new abstractions? Can�t

we just use traditional abstractions to factor out the complexity of
distributed programming and consider distribution as an
implementation detail? �. This is the philosophy underlying the
notino of remote procedure call and its successor, remote method
invocation. The idea is to give the illusion that the application was
not distributed and that remote objects look as if they were local.
This is a very misleading view, and is one of the reasons why none
of CORBA, DCOM, and RMI does really make sense in a real
genuinely distributed setting�.� [LPD02], emphasis mine

Issue: should we reject COTS MW because it sometimes
violates transparencies, or should we employ higher layered
middleware to compensate?

© 2003 Washington State University Dave Bakken Middleware�25

One Middleware Layering Taxonomy (US DARPA)
� Infrastructure MW

� Encapsulates core OS Comm. and concurrency
services (sometimes enhances them too)

� Examples: JVMs, ACE, group comm.

� Distribution MW
� Provides rich distributed object model that

supports much heterogeneity and transparency
� Examples: CORBA, DCOM, .NET., Java RMI

� Common MW Services
� Adds high-level, domain-independent reusable

services for events, fault tolerance, security,
� Examples: CORBAServices, Eternal

� Domain-Specific Services
� Services and APIs tailored to (and reusable

only within) certain domains (health care,
telecommunications, etc)

� Examples: CORBA Domain Interfaces,
Boeing Bold Stroke architecture [Sha98]

(Courtesy of D. Schmidt; see [SKY+00,SSM+01])

© 2003 Washington State University Dave Bakken Middleware�26

Multi-Layered Adaptation Example: WSOA

� Weapon Systems Open Architecture (WSOA)

� Adaptive architecture, prototype has flown in an
experimental aircraft

� Supporting F-15 fighter and command+control (C2)
collaboration in-flight, to retarget and rehearse

� Very brief overview follows, see [Loy01,Cor00] for more
details

� Note: multiple layers of adaptation, not same MW layers on
last slide�

© 2003 Washington State University Dave Bakken Middleware�27

Fighter Information Technology
Past and Future

� Historical approach
� Information sources primarily constrained to onboard,

deterministic resources

� Functionality limited to static algorithms, cyclic processing, worst
case, static scheduling

� Expensive to maintain and test

� Future needs
� Offboard/onboard integration of data and functionality

� Non-deterministic communication and functionality

� Lower cost, rapid change, user/mission customization

� Integration with Joint Forces Global Info Grid to exploit
information superiority

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�28

Simplified WSOA Context
Airborne C2 Node
� Compiles Virtual Target

Folder (VTF)
� Retasks enroute to strike
� Collaboration with F-15 to

replan route
� CORBA IDL Interface

Warrior in F-15
� �Browser� requests for target and

imagery data
� Collaboration with C2 node for

target review and mission replan
� Previews updated mission enroute
� CORBA IDL Interface

© 2000 BBN Technologies

Time Critical Targets
� clear and present danger
� fleeting targets of opportunity

© 2003 Washington State University Dave Bakken Middleware�29

� Challenge: responding appropriately to
either transient or persistent overloads
and opportunities

� Approach: providing real-time
adaptive resource management on
multiple scales of time and distribution

�Immediate local adaptation in TAO�s
Real-Time Event Channel service, via a
hybrid static/dynamic scheduling
strategy

�Medium time-scale resource-centric
adaptation by resource managers, e.g.,
RT ARM (admission control
adjustments and adaptation)

�Broader adaptive application-centric
reconfiguration in the face of persistent
overloads, managed by the QuO
framework at the minimal appropriate
time scale

Providing Robust End-to-End QoS Management with QuO

Schedule
control params

Supplier

QuO
Delegate

Contract
SysCond

SysCondSysCond

Consumer

Network

SysCond

TAO ORB Core

TAO Real-Time Event Service

SysCond

QuO
 Delegate

TAO Adaptive
Scheduler

RT ARM
Scheduling
Feedback

CPU util
and progress

BBN Technologies
A Part of

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�30

� Updated approach is a �sliding
box� algorithm, which attempts
to maximize the number of
operations through load
balancing

� Operation execution rates are
adjusted according to their
current scheduling progress,
measured against the availability
of CPU cycles

� Soft real-time ops are adaptable,
while hard real-time ops have
fixed maximum bounds

� Soft real-time ops are over-
scheduled and rates adjusted to
compensate for actual results

Operation
Execution Rates

Hard Real-
Time Ops

Other Soft
Real-Time

Ops

Soft Real-
Time Op

LateEarly

RT-ARM CPU Management

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�31

RTARM

Browser
Application

Collaboration
Client

Application
Delegate

Progress
Contract

VTF
Collab.
Server

OSA C3I
Simulation

QoS Management

ORBexpress

Link-16 Simulation Software

DIS Network Tool

Net RM

Boeing (StL)

BBN

Oregon Graduate Institute

Washington University (StL)

Honeywell
Tech. Center

TAO ORB

C2C2 F-15F-15

TAO Adaptive
Scheduler

(Ground demo only)

WSOA Architecture

Link-16 Simulation Software

DIS Network Tool

© 2000 Boeing

Adjust expectedAdjust expected
QoSQoS

Adaptive behavior toAdaptive behavior to
update compressionupdate compression

level of next tilelevel of next tile

Optimization withinOptimization within
current operatingcurrent operating

regionregion
Criticality assurance,Criticality assurance,

then utilizationthen utilization
optimizationoptimization

Adaptive behavior toAdaptive behavior to
update operatingupdate operating

regionregion

© 2003 Washington State University Dave Bakken Middleware�32

WSOA QoS Control Flow

Early

On Time

Late

Normal

CPU Degraded

CPU Degraded

Normal

Normal

QuO � Manages application progress
� Early, On-Time, or Late for each

operation
Q

S

Contraction, Expansion

� Defines operating regions
� Range of rates for each operation

� Also handles image tiling (not shown)

RT-ARM
� Manages QoS parameters within the

given operating regions
� Adjust rates within defined ranges

for each operation

System
Resource
Manager

Processor
Resource
Manager

Feedback Adaptation

Q

S

� Reports when operating region is
violated (or will be violated)

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�33

WSOA QoS Control Flow (cont�d)

RT-ARM
� Adjusts current available dispatch rate

ranges for each operation

TAO Scheduler
� Binds specific rate according to RT-

ARM supplied admission control policy

Processor
Resource
Manager

TAO Scheduler

� Provides admission control policy
� Queries TAO Scheduler for monitored

execution time results

� Queues operations and enforces hybrid
static/dynamic scheduling policy

� Makes available to RT-ARM the actual
execution times of each scheduled
operation

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�34

Outline

� Middleware: Definition and Benefits

� Examples of Middleware

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

© 2003 Washington State University Dave Bakken Middleware�35

Middleware and Dependability

� [� Too many things to say about dependable middleware,
too little time�.]

� Middleware�s rich abstractions can be used to implement
dependability in many ways�.

� A few examples follow, but some (of many) others worth
mentioning: MAFTIA, Eternal, Immune, FT-CORBA,
DACE, DOORS, X-ability, TTP, MARS, �.. and of course
Delta-4�s pioneering work

© 2003 Washington State University Dave Bakken Middleware�36

QuO Gateway: Dependability Mechanism

Dependability mechanism inserted between ORBs (in the network)

� To the �Client� ORB, the QuO Gateway looks like the object

� To the �Server� ORB, the QuO Gateway looks like a client

� The two ends of the gateway are on the same LAN as the
Client/Object and may be on the same host

Note: this implements the mediator pattern

IIOP
Glue

Specialize Protocols
(Maestro Group Comm.

for AQuA;
RSVP for DIRM)

IIOP
Glue

Control

Client
w/ORB

Server
w/ORB

ControlWAN

IIOP IIOP

© 2003 Washington State University Dave Bakken Middleware�37

AQuA Handlers: Programming the Gateway
Design space of dependable computing has many variables! Lots of

different ways to use group communication between two groups:
� Client group has leader or has no leader

� how much do you trust client group?
� Server group has leader or has no leader
� Multicast strengths (total, causal, FIFO, �) used in connection

group
� Which members of client and server groups are in �connection

group�
� Location and algorithm for voting/collation
� How many rounds of multicasts (e.g., for byzantine)
� Location of buffering of requests/replies

� Caveat: not shown in following diagrams
� Also: interaction with handler �upstream� or �downstream� in a

nested call
� A ! B ! C: handlers A ! B and B! C need to be managed together, for

reasons of performance and possibly correctness
All above can be handled in MW; most can be ~transparent to apps

© 2003 Washington State University Dave Bakken Middleware�38

AQuA Scheme1 Request Steps

(Leader)

C-Rep1
ORB

GW

GW

ORB
 S-Rep1

C-Rep2
ORB

GW

GW

ORB
 S-Rep2

C-RepN
ORB

GW

GW

ORB
 S-RepM

...

...

1
2

4
5

6

7

1
2

5 6

7

1
2

5

7

5

3 33 5 5

6

}

}

GWs in
Client
Group

GWs in
Server
Group

(All GWs are in
Connection Group)

© 2003 Washington State University Dave Bakken Middleware�39

AQuA Scheme1 Reply Steps
(Leader)

C-Rep1
ORB

GW

GW

ORB
 S-Rep1

C-Rep2
ORB

GW

GW

ORB
 S-Rep2

C-RepN
ORB

GW

GW

ORB
 S-RepM

...

...
(Leader)

8

10

11

14

8

11

12

14

8

11

14

11

9 9

1313 13 }

}

GWs in
Client
Group

GWs in
Server
Group

(All GWs are in
Connection Group)

11 11

© 2003 Washington State University Dave Bakken Middleware�40

Scheme1
Arch.

IIOPGW
(*.c, iiopgw.h, its main routine is in aquagw.c)

SendRequest()

Member of
object/S/1

Member of
connect/S/R/1

GW_Sequencer

GW_HandlerDict

GW_ReqIDSet

GW_Dispatcher

CORBA GIOP request

DeliverReply()

Dispatch()

Request() Reply()

CORBA GIOP reply

GW_Message =
GW_Wrapper +

IIOPGW_Message

GW_Scheme1_Handler

Sender (�client�) Side Receiver (�Server�) Side

IIOPGW
(*.c, iiopgw.h, its main routine is in aquagw.c)

SendRequest()

Member of
object/R/1

Member of
connect/S/R/1

GW_WrapperSet

SendReply()

GW_Dispatcher

CORBA GIOP reply

DeliverRequest()

Dispatch()

Request() Reply()

CORBA GIOP request

Implements the active protocol resembling that in Proteus design doc. Server-side Ldr GW votes on requests (H2), receiver-side GW ldr votes on replies (H6). Assumes clients have no asynch. requests
outstanding, so a gap in a reply sequence in H6 means a one-way request occurred (need trickier data structures to handle asynch replies: B,<n1,n2�,nk>.) Void where prohibited by law. YMMV.

D2

D3

D4

D5

1 2 23

H4

D6

D7D10

D11

D12

D13

H5

55

D14

H8

D15

1: pt2pt ToLdr

D1 D16 D9 D8

2: IfLdr 3: IfLdr

4

4: pt2pt ToLdr 5: IfLdr6: IfLdr

6

H1

H2 H3c

H6

GW_Message =
GW_Wrapper +

IIOPGW_Message

H3a

GW_Scheme1_Handler

H2: IfLdr
VOTE Req

H6: IfLdr
VOTE Rep

H3b
H3d

H7c

H7a

H7b

© 2003 Washington State University Dave Bakken Middleware�41

D1. Sender (�client�) ORB delivers IIOP msg.
D2. S-IIOPGW enqueues msg
D3. Dispatcher dequeues message
D4. Dispatcher looks up next sequence and calls Request()
D5. Dispatch handler looked up and dispatched to; stores local ReqID

H1. GW_Scheme1_Handler::SendRequest() does
 a. S-GWs send pt2pt msg #1 to Ldr S-GW
 b. NonLdr S-GWs buffer msg #1 (to be deleted in H3b).
H2. When recv msg #1, Ldr S-GW votes on requests, (in this case sends just the first one), and sends chosen request in msg #2 to connection group unordered
H3. When receive msg #2
 a. All NonLdr R-GWs store msg #2 in buffer (to be deleted in H4b)
 b. NonLdr S-GW delete msg #1 from buffer (stored in H1b)
 c. Ldr R-GW sends totally-ordered msg #3 to R-GWs to order across all client groups
H4. When receive msg #3,
 a. R-GWs call Dispatcher->DeliverRequest()
 b. NonLdr R-GW deletes msg #2 from buffer (stored in H3c)

D6. Dispatcher places invocation msg in queue for IIOPGW
D7. IIOPGW removes msg from queue
D8. IIOPGW delivers msg to Receiver (�server�) ORB
D9. �server� ORB sends back IIOP reply msg to R-IIOPGW
D10. R-IIOPGW queues reply message for R-GW
D11. R-GW dequeues reply msg
D12. R-W calls dispatch->Reply()
D13. R-GW Dispatcher->Reply() notes handler# from Msg, looks up wrapper, and calls Handler1->SendReply()

H5. GW_Scheme1_Handler::SendReply() does
 a. R-GWs send reply msg #4 pt2pt to Ldr R-GW
 b. NonLdr R-GW buffers msg #4 (to be deleted in H7a)
H6. When msg #4 arrives Ldr R-GW votes on replies and sends chosen reply (in this case the first msg #4 with this seq#) in msg #5 unorderd to connection grp. Discards
 the rest of the replies with same seq#. Gaps in seq# may occur here, but if so this is due to a one-way request, since for now we assume no asynch client requests.
H7. When msg #5 received
 a. NonLdr R-GW can delete buffered reply msg #4 (stored in H5b) (note Ldr R-GW does not receive it because unorderd; else it would just discard it)
 c. Ldr S-GW sends reply msg #6 ordered multicast to all S-GWs
 c. NonLdr S-GW stores reply msg #6 in buffer (deleated in H8b)
H8. When msg #6 arrives,
 a. S-GWs call dispatcher->DeliverReply() with this reply message.
 b. NonLdr S-GWs delete msg #5 from buffer (stored in H7c).

D14. S-GWs DeliverReply() queues msg for IIOPGW
D15. IIOPGW dequeues message
D16. IIOPGW sends IIOP message to sender �client� ORB

Scheme1 Steps

© 2003 Washington State University Dave Bakken Middleware�42

References (Not comprehensive!!!!!)
� [Bak03] D. Bakken, �Middleware�, 5-page article by Dave Bakken in Encyclopedia

of Distributed Computing, Kluwer, to appear.
www.eecs.wsu.edu/~bakken/middleware.pdf

� [Cor00] D. Corman, �Weapon Systems Open Architecture�,
http://quite.teknowledge.com/aboutQUITE/meetings/121200_PI_Meeting/WSOA.pdf

� [Cou02] G. Coulson, �What is Reflective Middlware?�, IEEE Distributed Systems
Online, October 2002, http://dsonline.computer.org/middleware/RMarticle1.htm

� [LPD02] EPFL Distributed Programming Laboratory (LPD) , �DACE: Distributed
Asynchronous Computing Environment�, available via
http://lpdwww.epfl.ch/research

� [LSZ+01] J. Loyall et al, �Comparing and Contrasting Adaptive Middleware
Support in Wide-Area and Embedded Distributed Object Applications�, ICDCS�01.

� [Quo02] http://quo.bbn.com
� [Sha98] D. Sharp, �Reducing Avionics Software Cost Through Component Based

Product Line Development�, Software Technology Conf., Salt Lake City, Apr.1998.
� [SKY+00] D. Schmidt et al, �Developing Next-Generation Distributed Applications

with QoS-Enabled DPE Middleware�, IEEE Communications Magazine, Oct. 2000.
� [SSM+01] D. Schmidt et al, �Toward Adaptive and Reflective Middleware for

Network-Centric Combat Systems�, Crosstalk: The Journal of Defense Software
Engineering, November 2001.

© 2003 Washington State University Dave Bakken Middleware�43

Acknowledgements

� Doug Schmidt of DARPA and Vanderbilt provided the
multi-layered middleware slide

� The CORBA hooks slide was adaptated from a FTCS-29
tutorial by Shalini Yajnik of Lucent

� The WSOA slides were provided by Boeing Phantom
Works in St. Louis

� The .NET slides were provided by Microsoft

All the above were used with permission

© 2003 Washington State University Dave Bakken Middleware�44

Conclusions
� MW == �A layer of software above the operating system

but below the application program that provides a
common programming abstraction across a distributed
system� [Bak03]

� MW has many practical benefits, including greatly
simplifying programming distributed systems, by (largely)
providing some transparencies while masking heterogeneity

� MW (especially OO-MW) is a rich and high-level enough
of an abstraction to support a wide variety of adaptation and
dependability schemes; many provided (largely)
transparently to the application program

� Multiple layers of MW are often a good way to
� subdivide a complex MW framework
� Levereage COTS MW
� Integrate other researcher�s mechanisms

© 2003 Washington State University Dave Bakken Middleware�45

Outline

� Middleware: Definition and Benefits

� Examples of Middleware

� Middleware and Adaptation

� Multi-Layered Middleware

� Middleware and Dependability

� Backup Slides

© 2003 Washington State University Dave Bakken Middleware�46

MicroQoSCORBA

� A QoS-Enabled, Reflective, and Configurable
Middleware Framework for Embedded Systems
� PI: David Bakken, Washington State University

� Issues: how to create middleware let developer choose what
to strip out and constrain to get middleware small

� Novelty:
� Only middleware that is tailored to both the application�s and the

environment�s constraints
� Very fine granuarity of configuration choice

� QoS so far
� Fault Tolerance: Done (Kevin Dorow)
� Security: Work in Progress (A. David McKinnon)
� RealTime: Work in Progress (Dr. Wes Lawrence, others TBD)

� Funding: Cisco, NSF, likely Boeing soon

© 2003 Washington State University Dave Bakken Middleware�47

Voting and Data Fusion in Middleware

� Voting and data fusion in middleware (in the presence of
heterogeneity)
� PI: David Bakken, Washington State University

� Supporting a wide variety of algorithms via programmable
primitives in a middleware-level VM

� Funding: DARPA OASIS, Air Force (new security work
too)

� See DSN-2001 paper, DSN-2002 demo paper for more
details

© 2003 Washington State University Dave Bakken Middleware�48

The QuO Toolkit Provides Tools for
Building QuO applications

� Quality Description Languages (QDL)
� Support the specification of QoS contracts (CDL), delegates and

their adaptive behaviors (SDL), connection, creation, and
initialization of QuO application components (ConnDL)

� QuO includes code generators that parse QDL descriptions and
generates Java and C++ code for contracts, delegates, creation, and
initialization

� QuO Runtime Kernel
� Contract evaluator

� Factory object which instantiates contract and system condition
objects

� System Condition Objects, implemented as CORBA objects

CORBA IDL

Code
Generators

Code
Generators

Contract Description
Language (CDL)

QuO RuntimeQuO Runtime

Structure Description
Language (SDL)

Delegates Contracts

Connector Setup
Language (CSL)

© 2003 Washington State University Dave Bakken Middleware�49

CLIENT

Delegate
Contract

SysCond

Contract

Network

MECHANISM/PROPERTY
MANAGER

operation()
in args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

Measurement in QuO
� In-band measurement

handled by instrumentation

� A structure is
transparently passed
along with the method
call/return

� Information can be
inserted, read, and
processed to record and
evaluate method call
statistics (e.g., the time
spent in marshalling)

� Out-of-band measurement
provided by system
condition objects

Mechanism
 Developer

Specialized ORBs or Services

Simple
Value

Measured
Value

(Sensor)

Composed
Value

Application
Developer

QoS
Developer

QuO Kernel

RSVP
Controller

Control
Value

Status
Value

CORBA Object
Device
Status

Service

Control
Value

© 2003 Washington State University Dave Bakken Middleware�50

Adaptation and Control in QuO
� In-band adaptation provided

by the delegate and gateway
� A delegate decides what to do

with a method call or return
based upon the state of its
contract

� Gateway enables control and
adaptation at the transport layer

� Out-of-band adaptation
triggered by transitions in
contract regions
� Caused by changes in the system

observed by system condition
objects

CLIENT

Delegate
Contract

SysCond

Contract

Network

MECHANISM/PROPERTY
MANAGER

operation()
in args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

CLIENT

Delegate
Contract

SysCond

Contract

Network

MECHANISM/PROPERTY
MANAGER

operation()
in args

out args + return value

IDL
STUBS

Delegate

SysCond

SysCond

SysCond

IDL
SKELETON OBJECT

ADAPTER

ORB IIOP ORBIIOP

CLIENT OBJECT
(SERVANT)
OBJECT
(SERVANT)

OBJ
REF

© 2003 Washington State University Dave Bakken Middleware�51

Collaboration
Client Expected

Progress

Delegate

Network
MonitorTAO ORB

Progress
Contract

Measured
Progress

get_image()

get_tile(n, q)

adjust_rates()

Collaboration Task

NAVHUD

Soft Real-Time
Tasks

Hard Real-Time
Tasks

RT Event
Channel

RT
Schedulertask

event
rates

RMS or MUF scheduling of tasks

VTF tile

Network

Processor
Resource
Manager

Adaptive Behavior Integrated with
Advanced Resource Management in WSOA

QuO Components

TAO components

RT-ARM components

© 2000 Boeing

© 2003 Washington State University Dave Bakken Middleware�52

Delegates Change Their Behavior Based on
Their Contract�s Current Regions

Dispatch

Contract
Pa

ss
 T

hr
ou

gh

B
lo

ck

Sh
ap

e

PreMethod
Measurements

Method Call

Lower Method Call

Current Regions

Result

Lower Result

SysCond

SysCond

Current Regions

PostMethod
Measurements

Delegate

Alternative
Behaviors

© 2003 Washington State University Dave Bakken Middleware�53

QoS-Aware Resource Management II: Control over
Resource Allocation is Useless w/o Information on Usage

Patterns & QoS Requirements

Appropriate
Control Band

Qualitative

Quantitative

Ad Hoc

Information Detail

Amount of Control
Little Lots

Current
Dist. Syst.
Practice

Comm QoS
Multimedia

R+DWaste of Time

Controlling
on Noise

© 2003 Washington State University Dave Bakken Middleware�54

Layers of Managers Integrate Adaptation Policies at
Different Levels & from Different Sources

� Functional Info (solid line) and �QoS meta-data� (dashed line)

� Translation between Manager Layers

� Centralized view vs. edge view

� Note: above is logical view, sometimes layers are merged�

Client

Application
Manager

QuO

Object

QuO

Resource
Manager

Middleware
Manager

Specialized/
Wrapped ORBs

Host Host

Logical Method Call With QoS Contract

Specialized/
Wrapped ORBs

© 2003 Washington State University Dave Bakken Middleware�55

Appl.
Client #1

QuO Contracts & SysConds
 involving Property X

1
2

3

1

3

2

Host A

QuO Object
Delegate

Canonical QuO Architecture for Generic
Property Package X

{Adaptation
by
App. Client

{Adaptation
by QuO
Above ORB

{Adaptation

Below ORB

{Adaptation
by App.
Object

Network Services
(RSVP, Group. Com, …)

Status
Services

CORBA/ DCOM

CORBA/DCOM

Status
Services

Reconfig
Mech.

Status
Services

Reconfig
Mech.

Reconfig
Mech.

{Adaptation
by QuO
Above ORB

Property X
(Middleware)

Manager:

Maintains
Property X

of
some objects

for
some clients

3

5

2
(Property X
Requested)

(Reconfig
Mechanisms)

(Status
Info) 4

(Property X
Delivered)

Host C

Other
Status

Services

Other
Reconfig

Mechanisms

5 4

(Other
Clients,
Objects,

Contracts..)

�

Object #1
 Impl.

1

Object #2
 Impl.

Reconfig
Mechanisms

Status
Services

5 4

QuO Object
Delegate

Host B

