Building accurate
intrusion detection
systems

Diego Zamboni
Global Security Analysis Lab
IBM Ziirich Research Laboratory

Outline

=*Brief introduction to intrusion detection
*The MAFTIA project

*Accurate intrusion detection systems
=Qur work (GSAL @ IBM ZRL)

Why intrusion detection?
Experience shows that...

"... users want features despite risks

—javascript, shared files, e-mail attachments, ...
"..it's hard to get rid of existing problems
—unsupported OS release, TCP/IP, ...
"... new systems contain “old” vulnerabilities.
.. Secure + secure # secure.
"... people make mistakes.

Real systems must deal with

security problems

Intrusion detection

*Seminal paper in 1980 by Anderson

"“Modern” intrusion detection started in 1987 with
paper by Dorothy Denning

"|s the new “hot buzzword”

—Many comercial products 9

—Many research projects

*No magical solution

Analogy: protecting your home

*"Prevention A
—Locked doors, secured windows, wall around
property, etc.

*Detection

—Motion detectors, fire alarm, dog, etc.

>We need both

*"We may also need a response

—Call police, disable intruders, etc.

Diversity is a good thing

*Multiple specialized sensors

VS

I ”IIIIIIIII' |

*Single large monolithic sensor

But how to make sense of this diversity?

~ N N N N

Characteristics of IDSs

Host

Audit Source

Network

Knowledge-Based
Method

Behavior-Based
Intrusion Detection
System
Sporadic

Continuous

Passive

Reaction
Active

“~”

Audit source

*Host
— Audit trails (log files)
—...or direct monitoring

*Network

— Headers or content of
network packets

% Behavior must be
deducted

% Subject to
insertion/evasion attacks

v'Can directly observe
behavior

% More difficult to deploy

¥ Possible performance

v'Easier to deploy impact

v"No performance impact

Method

=*Behavior-based

(aka anomaly detection)

*Knowledge-based
(aka misuse detection)

-Unknown events are
suspicious

—Known events are
suspicious

(signatures)

Outline

=*Brief introduction to intrusion detection
*The MAFTIA project

*Accurate intrusion detection systems
=Qur work (GSAL @ IBM ZRL)

MAFTIA

*Malicious and Accidental Fault Tolerance for
Internet Applications

—How to build reliable and secure systems out of
insecure components!?

*European project
—3 years
—6 partners
—6 technical workpackages

e W S S U

Why is ID a part of the picture?

*Things will go wrong

"Even when our system recovers or resists failures

and attacks, we want to know that something
happened

*|IDSs need to be protected too

—How to prevent the IDS itself from being disrupted!?
—Make sure what the IDS reports is true
—Who watches the watcher?

e W S S U

Outline

=*Brief introduction to intrusion detection
*The MAFTIA project

*Accurate intrusion detection systems
=Qur work (GSAL @ IBM ZRL)

(some) Limitations of existing
IDSs

*Unable to detect unknown attacks
—sometimes not even known attacks!
—constant updating needed

*Large number of false alarms
*|DSs assume they cannot be corrupted

Characteristics we would like in
an Intrusion Detection System

*Good coverage

*No false alarms

*Resilient sensors

*No training needed

=Capability for automatic updating

Outline

=*Brief introduction to intrusion detection
*The MAFTIA project

*Accurate intrusion detection systems
=Qur work (GSAL @ IBM ZRL)

Combining sensors to maximize

100%
Single D3

0% 1 4210565
___ B0% Hm3IDges
S 7g9 ||44IDSes -
T #5ID5es
D a0% ,
o
O 50% ’ Q’ . 4
g 0% f)
r 0% —g®

20%

10% L 4

0%

0%

20%

40% b0%

Rating

PreW

80% 100%

*Goal: find the
combination of
IDSes that meets

our requirements
(e.g. 80% coverage, 80%

rating precision)
*Optima at concurrent

100% coverage and

100% rating precision

Thousands

Dealing with false alarms (1/2)

Avg no. of alarms per sensor & month

150

100

50

*Problem:s:
—>95% false positives !

—Alarm flood worsens as number
of signatures rises.

*Conclusion:

—This noise makes it impossible to
correlate events of those sensors.

—We need to figure out how to

22233833 25555555555 I

= X=-1-2-2-2-2-2-1-) . .
- l=-2=-=-2-1-2-2-2-2=) mati remove It.
QRR R SR R R RNNNNNNNNAN automatica Yy remo

S e DA SOC === ar

Emggg’q;Uommm‘“Qw:E,:wg

<=5 qnO0zZaPL=IES 'qu

Dealing with false alarms (2/2)

o @nEEa

L] Historical Data Summary
T Alarm Data Mining

I
= s Data J‘Jl]n]ru

ylelds 2

Fix, Block, Filter, ... to
Reduce Alarm Load

a-s
Understand
Root Causes

v Data Mining key facts:
v Self-tuning: No hum

Building good intrusion detection
sensors

*Host-based sensors
v'Increased accuracy and access to good data
*Behavior-based sensors

v'Can react to unknown attacks
¥ They tend to generate lots of false alarms

DaemonWatcher

"Detect suspicious behavior of UNIX processes
*Principle:
—A process is characterized by the sequences (patterns)
of system calls it generates

—The patterns can be used to model the normal behavior
of a process

—Intrusions are assumed to exercise abnormal paths in
the executable code

e W S S U

DaemonWatcher

[4 ™
Training System Call Filtering / Pattern
Data Recording Translation Generation
124 PROC_Create
moste | g
Armoc Samg
-
Training System \ 4
N BDA
CBE
- = y
Real _| wu|System Call Filtering / Pattern
Data Recording Translation Matching >
reate [BIoIATcTBICICTBTE]
is7 FLe Open ALARM

N

Detection System

137 FILE_Open
137 PROC_SetSig
141 FILE_Read

DaemonWatcher: related work

*UNM

—The first to propose this approach
—Used fixed-length sequences of system calls

*CMU

—Analyzed the choice of sequence length

Exorcist

*Detects code insertion attacks
—Buffer overflow, parasitic viruses
*Host-based

*Behavior-based, but no training phase
—Profile is built by static analysis

*Components:
—Analysis phase
—Sensor

T N N N N

Buffer overflow

low memory

start

Parasitic virus

REE

start
open
branch on less open
\ ,
branch on less
calculation \
\ calculation
00ps: cLor write \

! oops: CITor W

nte
close !
/ W close f
finish /
finish

Exorcist overview

Analysis phase

Program executable

Runtime

open
write
close

Pattern Operating
matcher system

Alarm

NFA

Analysis phase

* The executable is analyzed using no external
information

* Binary code transformed to Control Flow Graph
* End product is an NFA

v'Very limited data flow analysis

v"No dependencies on source code availability
v'No training required

¥ Compiler, library and processor dependencies

—e.g. Assumes WJW}WM

Analysis phase

int main(char **argv, int argc) {

branch on less

\

calculation

write

/ open \

0O0ps: error

The Exorcist sensor

*"Implemented in the Linux kernel

—User-space sensor for testing (based on strace)
*Match against stream of syscalls, using an NFA
*Syscall parameters are not considered
=Signals caught and handled separately
*Threads are currently not handled

e W S S U

Sample Exorcist alarm

Start

v

FILE open

/

FILE write

j Sensor

FILE close Daemon
\ FILE_open

End FILE write
PROC create

Pattern Matcher Operating System

Alarm!

Other approaches

*Closely related work:
—stide (UNM), DaemonWatcher (IBM ZRL)
—David Wagner's static analysis (UC Berkeley)
*Policy-based protection:
—BlueBox (IBM Watson)
—RSBAC (Amon Ott, rsbac.org)
—LIDS

*Other buffer overflow protection mechanismes:
—StackGuard, StackGhost, PAX, etc.

W W e W e U

Exorcist benefits and drawbacks

v"No training needed

—Only update profile when program changes
v'Sensor resistant to attacks
v'False-positive free by design
v'Detects new attacks
v'Can potentially stop attacks
¥ Prone to mimicry attacks
% Currently requires patching the kernel

e W S S U

Exorcist present and future

*Being tested internally

—Performance tests, accuracy tests
*"Windows version? (DLL + threads)
*Product or Open Source!?
*"Improve analysis phase
"ob. Autonomic Computing

—can identify new attacks
—can automatically protect new programs

—can be part.of an immu\nfﬁ')w

