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Public Key Cryptography
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Using a Certification Authority
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Certification Authority

! CA stores certificates.
� Each certificate is a binding: _name, Kname_
� Each certificate is signed by CA.

! Clients know public key of CA. Clients issue
requests:
� Query to retrieve certificate for a name.
� Update to change binding and invalidate

certificate.
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CA Security and Fault-tolerance

Fault-tolerance and security for a CA means

� CA service remains available.
� CA signing key remains secret.

despite

� failures (=independent events) and
� attacks (=correlated events).
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COCA (Non)-Assumptions

! Servers: correct or compromised. At most t
servers compromised during window of
vulnerability, and 3t < n holds.

! Fair Links:  A message sent enough times will
be delivered.

! Asynchrony:  No bound on message delivery
delay or server speed.

Weaker assumptions are better.
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Security and Fault-tolerance:

Query and Update

Dissemination Byzantine Quorum System:
� Intersection of any two quorums contains at least

one correct server.
� A quorum comprising only correct servers always

exists.

! Replicate certificates at servers.

! Each client request processed by all correct
servers in some quorum.

! Use service (not server) signing key.
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Security and Fault-tolerance:

Service Signing Key Secrecy

! Service signing key stored at each server.

                        versus

! Employ threshold signature protocol:
� Store a share of signing key at each server.
� Use (n, t+1) threshold cryptography to sign.
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Security and Fault-tolerance:

Secret Sharing

x
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Security and Fault-tolerance:

Mobile Virus Attacks

! Compromise server CA1, detect, repair.
! Compromise server CA2, detect, repair.
   �
! Compromise server CAt+1, detect, repair.

t+1 secret shares revealed, even though at
most 1 site ever compromised.
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Security and Fault-tolerance�Mobile Virus Attacks:

Proactive Secret Sharing
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Proactive Secret Sharing:

Computing New Shares

s1 s2 s3

old sharing

s1�
s2�

s3�

ne
w

 s
ha

rin
g

old share: si

subsharing:
   si1 si2 si3 �

subsharing:
   s1i s2i s3i �

new share: si�

split

reconstruct



12

Proactive Secret Sharing:

Windows of Vulnerability

! At most t servers compromised in a window.
! Shares, keys, state all refreshed.
! Local clock at some server initiates refresh.
! Denial of service increases window size.

X X XX

X
proactive refresh
server compromise

time
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COCA Request Processing

! Client issues request and awaits response.

! COCA accepts request:
� Some correct COCA server received request.

! COCA completes request:
� Some correct COCA server constructs response.

Liveness: Every accepted request eventually
is completed.
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COCA Request Processing:

Ordering Client Requests

! Query collects multiple certificates from servers.

! Select one based on serial number.

! Update is not indivisible:
� invalidate / create certificate are separate actions
� Consequences:

" Assign serial numbers consistent with service-centric causality
relation Å.

" C1 Å C2:   C2 created by Update having input C1

" Certificate�not just name�is input to Update.
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Key Management in COCA

! Service public key known to clients.
! Service private key is shared among servers.

� Private key shares refreshed periodically.
� Server state also refreshed.

! Server public keys not known to clients.
� Changing  server keys possible, despite large numbers

of clients.
� Clients cannot authenticate server responses.



16

Role of Delegates

Problem: Without server public keys �
" Clients cannot authenticate messages from

servers.
" Clients cannot determine whether a request has

been processed by a quorum.

Solution:  Delegate collects responses.
" Client requests are signed and include nonce.
" Delegate handles request on behalf of client. It is

a server and it knows COCA public keys.
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COCA Architecture
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Processing a Query Request Q

#$ Delegate forwards Q to all COCA servers.
%$ Delegate awaits certs from a quorum.
&$ Delegate selects cert with largest serial number.
'$ Delegate runs threshold protocol to sign

response with nonce and cert.
($ Delegate sends response to client.
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Processing an Update Request U

#$ Delegate constructs new certificate c, using threshold
protocol to generate signature.

%$ Delegate sends c to all COCA servers.
&$ Upon receipt, server replaces current certificate for that

name iff c has larger serial number.  Server then sends
�done� to delegate.

'$ Delegate awaits �done� from a quorum of servers.
($ Delegate runs threshold protocol to sign response with

nonce and cert.
)$ Delegate sends response to client.
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Compromised Delegate
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Self-verifying Messages

A self-verifying message comprises:
� Information the sender intends to convey.
� Evidence the receiver can check that the

information is consistent with given protocol.
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Compromised Client
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Message Loss due to Fair Links

Defense against message loss �
! Resend each message until ack received

from intended recipient.

Defense against compromised recipient �
! Protocol structured as a series of multicasts.

� If ack received from enough recipients, halt resending.
� Ensure there are enough correct recipients even if t

servers are compromised.
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Denial of Service Defenses

Problem: Denial of service possible if cost of
processing a bogus request is high.

Defenses:
� Increase cost of making a bogus request.

� Decrease cost/impact of processing a bogus request.
" Cheap authorization mechanism rejects some bogus requests.

" Processor scheduler partitions requests into classes.

" Results of expensive cryptographic operations cached and
reused

� Asynchrony and Fair Links non-assumptions.
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Experimental COCA Deployments

Prototype implementation:
" Approx. 35K lines of new C source
" Uses threshold RSA with 1024 bit RSA keys built from OpenSSL
" Certificates in accordance with X.509.

Deployments:
� Cornell CS Dept local area network
� Internet:

" University of Tromso (northern Norway)
" University of California (San Diego, California)
" Dartmouth College (Hanover, New Hampshire)
" Cornell University (Ithaca, New York)
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Engineered for Performance

In the normal case:
� Servers satisfy strong assumptions about

execution speed.

� Messages sent will be delivered in a timely
way.

COCA optimizes for the normal case.
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�Normal Case� Optimizations

! Client enlists a single delegate.  Only after
timeout are t additional delegates contacted.

! Servers do not become delegates until client
asks or timeout elapses.

! Delegates send responses to client and to all
servers.  Used to abort activity and load the
cache.
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�Normal Case� Optimizations
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LAN Performance Data

54.61990PSS

9.01109Update

16.7629Query

Std dev.
(msec)

Mean
(msec)

COCA
Operation

4 Sun E420R SPARC servers (4 450 Mhz processors.  Solaris 2.6)

100 Mb Ethernet  (Round trip delay for UDP packet: 300 micro secs)

Sample means for 100 executions.
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LAN Performance Breakdown
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WAN Performance Data
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WAN Performance Breakdown

0.6%1.1%0.8%Other

87.4%88.7%88%Idle

1.6%SSL

7.8%One-Way Function

2.6%2.5%3.2%Message Signing

8.7%8.0%Partial Signature

PSSUpdateQuery



33

Denial of Service Attacks

Attacker might:
� Send new requests.
� Replay old client requests and server

messages.
� Delay message delivery or processing.
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Denial of Service Defense:

Scheduler-Enforced Isolation
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Denial of Service Defense:

Effects of Caching
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Denial of Service Defense:

Effects of Message Delay
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Denial of Service Defense:

Effects of Message Delay
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COCA:  Recap of Big Picture

server failure
  dissem. Byzantine Quorum

server compromise
  threshold signature protocol

mobile attack
  proactive secret sharing (PSS)

asynchrony
  asynchronous PSS

Servers

Client


