
Design and Deployment of COCA

Fred B. Schneider
Department of Computer Science

Cornell University
Ithaca, New York 14853

U.S.A.

Joint work with Lidong Zhou and Robbert van Renesse.

1

Public Key Cryptography

Encrypt

Alice KA kA

Carol KC kC

Bob KB kB

Decrypt

Alice Bob

101101110�

2

Using a Certification Authority

Encrypt

Alice

CA
(CA: Alice:KA)Signed: CA

(CA: Carol:KC)Signed: CA

(CA: Bob:KB)Signed: CA

 KCA
+ KB

to Bob101101110�

3

Certification Authority

! CA stores certificates.
� Each certificate is a binding: _name, Kname_
� Each certificate is signed by CA.

! Clients know public key of CA. Clients issue
requests:
� Query to retrieve certificate for a name.
� Update to change binding and invalidate

certificate.

4

CA Security and Fault-tolerance

Fault-tolerance and security for a CA means

� CA service remains available.
� CA signing key remains secret.

despite

� failures (=independent events) and
� attacks (=correlated events).

5

COCA (Non)-Assumptions

! Servers: correct or compromised. At most t
servers compromised during window of
vulnerability, and 3t < n holds.

! Fair Links: A message sent enough times will
be delivered.

! Asynchrony: No bound on message delivery
delay or server speed.

Weaker assumptions are better.

6

Security and Fault-tolerance:

Query and Update

Dissemination Byzantine Quorum System:
� Intersection of any two quorums contains at least

one correct server.
� A quorum comprising only correct servers always

exists.

! Replicate certificates at servers.

! Each client request processed by all correct
servers in some quorum.

! Use service (not server) signing key.

7

Security and Fault-tolerance:

Service Signing Key Secrecy

! Service signing key stored at each server.

 versus

! Employ threshold signature protocol:
� Store a share of signing key at each server.
� Use (n, t+1) threshold cryptography to sign.

8

Security and Fault-tolerance:

Secret Sharing

x

p(2)

p(4)
p(6)p(0)

p(0) is secret

p(i) is share at site i

m points determine
an m-1 degree poly

(n,k) secret sharing:
k-1 degree poly

p(x)

9

Security and Fault-tolerance:

Mobile Virus Attacks

! Compromise server CA1, detect, repair.
! Compromise server CA2, detect, repair.
 �
! Compromise server CAt+1, detect, repair.

t+1 secret shares revealed, even though at
most 1 site ever compromised.

10

Security and Fault-tolerance�Mobile Virus Attacks:

Proactive Secret Sharing

x

p�(2)
p�(4)

p�(6)

p�(0) q(x): random poly

p�(x): p(x)+q(x)

p�(0) = p(0)

p�(i) is share at site i

p(x)

11

Proactive Secret Sharing:

Computing New Shares

s1 s2 s3

old sharing

s1�
s2�

s3�

ne
w

 s
ha

rin
g

old share: si

subsharing:
 si1 si2 si3 �

subsharing:
 s1i s2i s3i �

new share: si�

split

reconstruct

12

Proactive Secret Sharing:

Windows of Vulnerability

! At most t servers compromised in a window.
! Shares, keys, state all refreshed.
! Local clock at some server initiates refresh.
! Denial of service increases window size.

X X XX

X
proactive refresh
server compromise

time

13

COCA Request Processing

! Client issues request and awaits response.

! COCA accepts request:
� Some correct COCA server received request.

! COCA completes request:
� Some correct COCA server constructs response.

Liveness: Every accepted request eventually
is completed.

14

COCA Request Processing:

Ordering Client Requests

! Query collects multiple certificates from servers.

! Select one based on serial number.

! Update is not indivisible:
� invalidate / create certificate are separate actions
� Consequences:

" Assign serial numbers consistent with service-centric causality
relation Å.

" C1 Å C2: C2 created by Update having input C1

" Certificate�not just name�is input to Update.

15

Key Management in COCA

! Service public key known to clients.
! Service private key is shared among servers.

� Private key shares refreshed periodically.
� Server state also refreshed.

! Server public keys not known to clients.
� Changing server keys possible, despite large numbers

of clients.
� Clients cannot authenticate server responses.

16

Role of Delegates

Problem: Without server public keys �
" Clients cannot authenticate messages from

servers.
" Clients cannot determine whether a request has

been processed by a quorum.

Solution: Delegate collects responses.
" Client requests are signed and include nonce.
" Delegate handles request on behalf of client. It is

a server and it knows COCA public keys.

17

COCA Architecture

client

response
delegate

server

server

server

server

server

server

server

quorum

18

Processing a Query Request Q

#$ Delegate forwards Q to all COCA servers.
%$ Delegate awaits certs from a quorum.
&$ Delegate selects cert with largest serial number.
'$ Delegate runs threshold protocol to sign

response with nonce and cert.
($ Delegate sends response to client.

19

Processing an Update Request U

#$ Delegate constructs new certificate c, using threshold
protocol to generate signature.

%$ Delegate sends c to all COCA servers.
&$ Upon receipt, server replaces current certificate for that

name iff c has larger serial number. Server then sends
�done� to delegate.

'$ Delegate awaits �done� from a quorum of servers.
($ Delegate runs threshold protocol to sign response with

nonce and cert.
)$ Delegate sends response to client.

20

Compromised Delegate

client

self-verifying
response

delegate

server

server

server

server

server

server

server

Enlist t+1 delegates

21

Self-verifying Messages

A self-verifying message comprises:
� Information the sender intends to convey.
� Evidence the receiver can check that the

information is consistent with given protocol.

22

Compromised Client

client

response
delegate

server

server

server

server

server

server

server

quorum

23

Message Loss due to Fair Links

Defense against message loss �
! Resend each message until ack received

from intended recipient.

Defense against compromised recipient �
! Protocol structured as a series of multicasts.

� If ack received from enough recipients, halt resending.
� Ensure there are enough correct recipients even if t

servers are compromised.

24

Denial of Service Defenses

Problem: Denial of service possible if cost of
processing a bogus request is high.

Defenses:
� Increase cost of making a bogus request.

� Decrease cost/impact of processing a bogus request.
" Cheap authorization mechanism rejects some bogus requests.

" Processor scheduler partitions requests into classes.

" Results of expensive cryptographic operations cached and
reused

� Asynchrony and Fair Links non-assumptions.

25

Experimental COCA Deployments

Prototype implementation:
" Approx. 35K lines of new C source
" Uses threshold RSA with 1024 bit RSA keys built from OpenSSL
" Certificates in accordance with X.509.

Deployments:
� Cornell CS Dept local area network
� Internet:

" University of Tromso (northern Norway)
" University of California (San Diego, California)
" Dartmouth College (Hanover, New Hampshire)
" Cornell University (Ithaca, New York)

26

Engineered for Performance

In the normal case:
� Servers satisfy strong assumptions about

execution speed.

� Messages sent will be delivered in a timely
way.

COCA optimizes for the normal case.

27

�Normal Case� Optimizations

! Client enlists a single delegate. Only after
timeout are t additional delegates contacted.

! Servers do not become delegates until client
asks or timeout elapses.

! Delegates send responses to client and to all
servers. Used to abort activity and load the
cache.

28

�Normal Case� Optimizations

29

LAN Performance Data

54.61990PSS

9.01109Update

16.7629Query

Std dev.
(msec)

Mean
(msec)

COCA
Operation

4 Sun E420R SPARC servers (4 450 Mhz processors. Solaris 2.6)

100 Mb Ethernet (Round trip delay for UDP packet: 300 micro secs)

Sample means for 100 executions.

30

LAN Performance Breakdown

2%6%5%Other

15%2%7%Idle

10%SSL

51%One-Way Function

22%19%24%Message Signing

73%64%Partial Signature

PSSUpdateQuery

31

WAN Performance Data

6205200PSS

4403710Update

3402270Query

Std dev.
(msec)

Mean
(msec)

COCA
Operation

32

WAN Performance Breakdown

0.6%1.1%0.8%Other

87.4%88.7%88%Idle

1.6%SSL

7.8%One-Way Function

2.6%2.5%3.2%Message Signing

8.7%8.0%Partial Signature

PSSUpdateQuery

33

Denial of Service Attacks

Attacker might:
� Send new requests.
� Replay old client requests and server

messages.
� Delay message delivery or processing.

34

Denial of Service Defense:

Scheduler-Enforced Isolation

0

0.5

1

1.5

2

2.5

0.01 0.10 1.00 10.00 100.00

Compromised Client Request Rate
(req/sec)

R
e
q

u
e
s
t

P
ro

c
e
s
s
in

g

T
im

e
 (

s
e

c
)

Query

Update

35

Denial of Service Defense:

Effects of Caching

0

2

4

6

8

10

12

14

16

0.1 1 10 100

Compromised Server Replay Rate (msg/sec)

R
e

q
u

e
s

t
P

ro
c

e
s

s
in

g
 T

im
e

(s

e
c

)

Query with caching

Query w/o caching

Update with caching

Update w/o caching

36

Denial of Service Defense:

Effects of Message Delay

0
1
2
3
4
5

0 10 20

Message Transmission Delay
at a Single Server (sec.)

R
e

q
u

e
s

t
P

ro
c

e
s

s
in

g

T
im

e
 (

s
e
c
.) Query

Update

PSS

37

Denial of Service Defense:

Effects of Message Delay

0

50

100

150

0 10 20

Message Transmission
Delay at All Servers (sec.)

R
e
q

u
e
s
t

P
ro

c
e
s
s
in

g

T
im

e
 (

s
e
c
.)

Query

Update

PSS

38

COCA: Recap of Big Picture

server failure
 dissem. Byzantine Quorum

server compromise
 threshold signature protocol

mobile attack
 proactive secret sharing (PSS)

asynchrony
 asynchronous PSS

Servers

Client

