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From Fault Injection Experiments to Dependability Benchmarking

Jean Arlat
LAAS-CNRS, Toulouse, France

Background
Fault injection has long being recognized as a pragmatic way to assess the behavior of computer systems in
presence of faults. It provides a useful complement to other dependability assessment techniques ranging
from measurement to axiomatic methods, especially when used in combination with them.

Fault injection is meant to speed up the occurrence of errors and failures by the development of controlled
experiments in which the target system is deliberately exposed to artificial faults. It allows for understanding
the effects of real faults and thus of the related faulty behavior of the target system. The contribution of fault
injection to dependability assessment encompasses both fault forecasting and fault removal [1]. In particular,
fault injection can be seen as a means for testing fault tolerance mechanisms with respects to special inputs
that are meant to cope with: the faults.

For the past 30 years, many valuable efforts have been reported that address the use of fault injection to
contribute to the validation of fault-tolerant systems, sometimes in cooperation with other techniques such as
analytical modeling and formal verification. In relation to analytical modeling, the estimation of the
distribution of the coverage achieved by the fault tolerance mechanisms is most of the time the principal
objective of the fault injection experiments.

Numerous techniques have been investigated ranging from i) simulation-based techniques at various levels
of representation of the target system (technological, logical, RTL, PMS, etc.), ii) hardware techniques
(e.g., pin-level injection, heavy-ion radiation, EMI, power supply alteration, etc.), and iii) software-
implemented techniques that support the bit-flip model in memory elements [2].

While the first technique considers a simulation model of the target system, and thus can be applied in the
early phase of the development process, the last two apply on the real system or at least a hardware-software
prototype of the target system, and thus incorporate actually all (or most) implementation details that
characterize the target system. Hybrid techniques, in particular using scan-chain devices incorporated in
modern ICs have also emerged. Many supporting tools have been developed to facilitate and automate the
conduct of fault injection experiments based on these various techniques [3].

Besides its contribution for supporting the evaluation of fault-tolerant systems, fault injection also proved
very much useful for characterizing the behavior of computerized systems and components in presence of
faults. Recently, particular emphasis has been put on software executives and operating systems, but the
studies carried out span the full range of levels related to information processing: from the physical structure
of IC devices to the Internet infrastructure. In addition, three major potential benefits brought by fault
injection can be identified that concern its contribution to fault removal: i) fault injection experiments can be
tailored as special tests to help reveal fault tolerance deficiency faults, ii) the so-called mutation testing
technique, featuring simple modifications of a software program, can be used both to help elaborate a test for
that program or to assess several software testing techniques, iii) fault dictionaries can be derived from fault
injection experiments to support fault diagnosis and maintenance activities.

Building up on the significant advances made by the research efforts and on the actual benefits procured,
fault injection made his way to industry, where it is actually part of the development process of many
providers, integrators or specifiers of dependable computer systems (e.g., Ansaldo Segnalamento
Ferroviario, Astrium, Compaq/Tandem, DaimlerChrysler, Ericsson SAAB Space, ESA, Honeywell, IBM,
Intel, NASA, Siemens, Sun, Volvo, just to name some). This definitely confirms the value of the approach.

Some Challenges for Dependability Benchmarking
In spite of several pioneering efforts made during the 1990’s (e.g., see [4-8]), there is still a significant gap
between the level of recognition attached to robustness benchmarks and fault injection-based dependability
benchmarking, on one hand and the wide offer and broad agreement that characterize performance
benchmarks, on the other hand. Much effort is clearly needed before similar standing can be achieved.

Based on the working definition proposed by the IFIP WG 10.4 SIGDeB1, a dependability benchmark can be
viewed as: “A way to assess measures related to the behavior of a computer system in the presence of faults,

                                                  
1 See http://www.dependability.org/wg10.4/SIGDeB.
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supporting the evaluation of dependability attributes or the characterization of the systems into well-defined
dependability classes.”

Three major properties have to be fulfilled by a dependability benchmark [9]: i) usefulness, for the
benchmark users in supporting a relevant characterization and/or quantification of the dependability features
and attributes that are of interest to them and easy to interpret, ii) fairness, in the sense that it should support
meaningful comparisons of various target systems, iii) acceptance by the computer industry and/or the user
community as an agreed reference that is to install and run on various platforms.

First, it is important to point out that a dependability benchmark cannot simply be achieved as mere
combination of performance benchmarks and experimental dependability assessment techniques, such as
fault injection. There are several specific concerns that need to be accounted for. In particular, several
dimensions have to be considered depending on: the target system, the application domain, the life cycle of
the target system, the usage of the benchmark, the measures of interest, etc. However, as is the case for
performance benchmarks, it is expected that a dependability benchmark will heavily rely on experiments and
measurements carried out on a target system.

Analogously to was introduced for fault injection-based evaluation [1], the experimental dimension of a
dependability benchmarking can be characterized by an input domain and an output domain. The input
domain corresponds to activity of the target system (workload set) and the set of injected faults (faultload
set). In particular, the workload defines the activation profile for the injected faults. The output domain
corresponds to a set of observations (measurements set) that are collected to characterize the target system
behavior in the presence of faults. A set of specific or comprehensive dependability measures can then be
derived from the analysis and processing of the workload, faultload and measurements sets. In practice, it is
often the case that the selection of the set of dependability measures of interest has a significant impact on
the determination of the other sets.

Although these sets have each a significant impact on the three properties identified above for a
dependability benchmark, it is definitely the determination of the faulload set that poses the most significant
problem, in this context.

Faultload Characterization
One important question is to figure out whether a limited set of techniques could be identified that are
sufficient to generate the relevant faultload sets according to the dimensions considered for the benchmark or
if rather many techniques are necessary. Indeed, although it is necessary to match the fault injection
techniques with respect to the faults they are intended to simulate, the benefit of having to support only a
limited number of techniques would be definitely beneficial from a portability viewpoint.

Moreover, it is worth pointing out that what is important is not to establish an equivalence in the fault
domain, but rather in the error domain. Indeed, similar errors can be induced by different types of faults (e.g.,
a bit-flip in a register or memory cell can be provoked by an heavy-ion or as the result of a glitch provoked
by a software fault).

Accordingly, two main related issues and questions have to be considered:

A) Fault representativeness (of a fault injection technique): To what extent the errors induced are similar to
those provoked by real faults or by a representative fault model?

B) Fault equivalence (of fault injection techniques): To what extent distinct fault injection techniques do
lead to similar consequences (errors and failures)?

So far, the investigations carried out concerning the comparison of i) some specific fault injection technique
with respect to real faults (e.g., see [10-12]) and ii) several injection techniques (e.g., see [13-17]) have
shown mixed results. Some were found to be quite equivalent, while others were identified as rather
complementary.

In particular, in [11], it was found that about 80% of the mutations considered led to errors similar to real
software faults. On the other hand, the study reported in [15] revealed that: i) the compile-time form of the
software-implemented fault injection technique used to inject faults in the code segment of the executed
application was found to sensitize the error detection mechanisms included into the MARS target system in a
similar way than the physical fault injection techniques considered (pin-forcing, heavy-ion radiation, EMI),
ii) faults injected into the data segment led to significantly distinct behaviors.
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Accordingly, further investigations are clearly needed so as to better identify the technology that is both
necessary and sufficient to generate the faultload to be included into a dependability benchmark. Several
important issues have to be accounted for in this effort:

1) Although strict fault representativeness can be difficult to address directly because it relates to real faults
that are difficult to trace, relevant insights can still be obtained by considering a (recognized) fault model
as the reference in place of real faults. This form of analysis is thus very much related to the notion of
fault equivalence, as expressed by question B) above.

2) Several relevant (ordered) levels of a computer system can be identified where faults can occur and errors
can be observed (technological, logical, RTL, control/data flow, kernel, operating system, middleware,
application). This form of hierarchy can be related to the one depicted in [18]. Concerning the faults,
these levels may correspond to levels where real faults are considered and (artificial) faults can be
injected. Concerning errors, the fault tolerance mechanisms (especially, the error detection mechanisms)
provide convenient built-in monitors.

3) For characterizing the behavior of a computer system in presence of faults (from the point of view of
either fault representativeness or fault equivalence), it is not necessary that the injected faults be “close”
to the target faults (reference), it is sufficient that they induce similar behaviors. What really matters is
that the respective error propagation paths converge before the level where the behaviors are monitored.

4) Two important parameters can be defined on these various levels:
- the distance dr that separates the reference faults from the level where faults are injected;
- the distance do that separates the level where the faults are injected from the levels their effects are

observed to be compared.
The shorter dr and the longer do and more it is likely that the injected faults will exhibit the same
behavior as the targeted faults.

5) In the context of dependability benchmarking, it is mandatory that the application of the same benchmark
on two (or more) target systems leads to a fair and meaningful assessment. However, in practice, it may
well be the case that the presence of a specific fault tolerance mechanism (FTM) on one target system
(and not on the other one(s)) will alter the error propagation paths. This has a significant impact on the
fairness property whenever the FTM is implemented at level located in between the level of the targeted
faults and the level where the faults are injected and thus intercept the error propagation paths. Indeed,
assuming a perfect 100% coverage for the FTM, then the fairness (with respect to the targeted faults) of
the benchmark using the faultload characterized by the injected faults would be zero. This could be
simply expressed by introducing another distance parameter: the distance dm separating the level where
the faults are injected from the level where the FTM is acting. The kind of problem previously mentioned
would thus be characterized by negative value for dm.

6) From a dependability benchmarking point of view, it might not always be possible nor cost-effective to
have access to the actual structure of the target system to identify a priori the faultload that would comply
with the fairness property. Accordingly, an alternative could be to favor a standard fault injection
technique that is less than perfect, but that is easy to implement and that covers a large faultload scope,
and then to establish a dialogue with the target system provider in order to derive a fair interpretation or
post processing of the benchmark measurements. This form of a posteriori processing can be related to
the approach presented in [19]. Besides the sample faultload used in the fault injection experiments
conducted was not representative of the probability distribution of occurrence of the real faults. Still,
meaningful results could be derived by compensating the bias in the sample by an a posteriori weighted
processing of the results.

Some Directions
In order to tackle this problem, a specific effort is currently being conducted within the framework of the
IST-2000-25425 DBench project. As an attempt to elaborate on the conceptual framework sketched in the
previous section, a comprehensive set of controlled experiments encompassing several levels of application
of faults, as well as observations are being conducted. The target systems include hardware controllers for
embedded applications, off-the-shelf operating systems and database applications. The fault injection
techniques encompass VHDL simulation, pin-level fault injection, software-implemented fault injection and
software mutation.

However, it seems necessary i) to seek for a more general consensus in particular with the industry sector
(including computer and component providers, integrators, and end-users) and ii) to conduct a wider scale
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controlled research effort on this topic. While the IFIP WG 10.4 SIGDeB provides a suitable forum for
making progress with respect to the first item, a proactive research incentive is required to support the
second item. In particular, it is worth pointing that new challenges are raised by the consideration of the
impact of accidental failures on the communication infrastructures widely used to process information, not
only from the point of view of availability, but also from the point of view of the potential threats caused to
the protections aimed at ensuring security.
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Building a Hierarchical Defense: An Immune System Paradigm
for Fault-Tolerant System Design

Algirdas Avižienis
University of California at Los Angeles, USA

There is a growing demand for very dependable systems, especially in telecommunications
and embedded systems. There are over 100 companies marketing such systems in the USA
alone. Looking at the entire commercial market, we see three major approaches to building
very dependable systems:

1. The "clustering" of complete systems;
2. Hot standby duplexing of critical subsystems;
3. The "intelligent platform management" for one chassis.

All three approaches do not sufficiently exploit fault tolerance support in hardware: in (1), the
cluster is under software control; in (2), critical hardware and software modules are not fully
protected themselves,e.g., the Ziatech architecture; in (3), the IPM hardware is itself not fault-
tolerant.  Furthermore, none of the three approaches offers support for design fault tolerance
by means of design diversity.

The thesis of this talk is that an orderly evolution of very dependable systems absolutely
needs a hardware-based infrastructure that supports, but does not require support from
defenses at higher levels, such as clustering software. Such an infrastructure is in some ways
very analogous to the autonomous, cognition-independent immune system of the human body.

The argument will be supported by an illustration of one possible approach to building an all-
hardware fault tolerance infrastructure that supports design diversity and is compatible with
various existing and proposed higher-level fault tolerance mechanisms.



Dependable Computer Networks

D. R. Avresky
Network Computing Lab., ECE Department

Northeastern University
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Within several years, it will be common to have private networked computing systems,
which will encompass tens of thousands of computing devices. Some of these networks (military,
banking, e-business, transportations) will run mission-critical applications. The challenge is to
build computer networks, based on COTS, that are inexpensive, accessible, scalable and
dependable. Private virtual networks are created by composing a complex set of hardware and
software components that are heterogeneous and subject to continuous upgrade, replacement, and
scaling their numbers. These systems are too complex to model formally, and reducing the failure
rate of individual components may not substantially reduce the rate of overall system failures due
to unexpected interactions between components. One may consider that failures are inevitable.
Having this in mind, we have to consider detection and recovery-oriented computing, a technique
for achieving high availability that focuses on detecting and recovering from failures rather than
preventing them entirely.

Dependability of service is of paramount concern for industrial and military applications
when information is required. In addition to being continuously available, these systems must be
free from data corruption. Absolute data integrity must be ensured through full self-checking and
fault isolation. As the number of components increases, so does the probability of component
failure. Therefore, a fault-tolerant technology is required in networked environments. Thus, one
of the objectives of the research is to increase the dependability of scalable networked systems.
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We propose to discuss interactions and tradeoffs between different software quality attributes 
that should be identified as early as possible, preferably while the architecture is being defined.

An architectural description is the earliest representation of a system that can be analyzed for
desired quality attributes, such as performance, availability, modifiability, interoperability,
and security. The architecture also provides insights as to how these attributes interact,
forming a basis for making tradeoffs between these attributes.

The Software Engineering Institute has developed a method for evaluating the architecture of
a software-intensive system against a number of critical quality attributes, such as availability,
performance, security, interoperability, and modifiability. The evaluation is based on test
cases that capture questions and concerns elicited from various stakeholders associated with
the system. The process of eliciting questions allows stakeholders to communicate directly,
thereby exposing assumptions that may not have surfaced during requirements capture.

The purpose of the proposed talk is not to present the method ("Quality Attribute
Workshops" http://www.sei.cmu.edu/publications/documents/01.reports/01tr010.html) but
rather to discuss linkages between quality attributes that present opportunities for tradeoffs. In
our experience conducting architecture evaluations, it is often the case that stakeholders (e.g.,
users, maintainers, developers) interpret terms like "security" or "dependability" in different
ways, depending on their roles and experience.

The taxonomies produced by communities of experts on different quality attributes tend to be
attribute centric. Thus, a dependability taxonomy might include "security" as a concern,
somewhere down the tree, while a security taxonomy would have performance or
dependability as sub-concerns of security.

What is missing in the taxonomies is the acknowledgment that no single attribute dominates
the field, that the importance or relevance of the attribute depends on the context or
environment in which the system operates. While the taxonomies are necessary, their
usefulness would be greatly enhanced by explicit identification of tradeoffs between
attributes. These could take the form of identifying techniques that affect more that one
quality attribute, the extent to which the choice of technique constitutes a sensitivity point for
an attribute, the extent to which a method improves multiple attributes (a win-win-win...
situation!) or how much we lose of some attribute by using a technique that benefits some
other quality attribute.

For example, "usability" in enhanced if users are given friendly advise when they make a
mistake BUT not when the users make mistakes of certain types. Thus, the users do not get
hints when they log-in with the wrong password -- this reduces usability but enhances
security. This is a tradeoff between these two attributes.
The objective of the proposed presentation is to identify opportunities for collaboration between
experts in different domains, to identify the extent to which techniques used to achieve or
control some quality attributes have an impact on other attributes, and if necessary, to design
appropriate experiments to validate tradeoffs hypothesis.
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Dependable systems provide some of the most critical, and intellectually challenging,
problems and opportunities facing computer scientists, and indeed the whole computer
industry. Over the past ten years or so, significant advances have been achieved in the
topic of dependable computing systems. Today, we understand a lot more about many of
the fundamental techniques involved in achieving dependability. But much further re-
search is required when considering the application of these concepts to different scale
systems, maybe distributed, their cost-effective integration into the system design proc-
ess, the problems of validating a planned design with respect to some given required bal-
ance of various system properties and the human factors involved in their operation. A
broad approach is required, encompassing theoretical studies, careful consideration of
possible alternatives and their likely consequences, and (in some cases quite extensive)
design and implementation activities.

Among the many open research problems that deserve further investigation, we focus
here on the following ones:

1. Production process of dependable systems: Research in this area is needed to un-
derstand better how systems should be designed and implemented. Going from re-
quirements to specification, to design decisions, to prototype implementation up to
implementation, requires a continuous interaction between the decisions taken in each
step with the validation and verification of each step, taking into account the possible
problems arising in design integration and consolidation. This aspect becomes even
more important when considering that the major recent trend in the area of system
development is on building systems out of existing components (e.g., legacy systems,
COTS components). Environments enabling system development through the compo-
sition of software components, offering methods and tools supporting the design,
analysis, construction and deployment of such systems are therefore of primary im-
portance. Integration, ability to compose and re-use appear to be very challenging is-
sues in the validation (of both design and implementation) of complex systems, in
particular dependable ones for controlling critical applications. A special effort to-
wards the emergence of a new discipline - System Engineering – is required, which
will encompass and integrate the current design discipline.

2. Human factors: It is now recognized that in complex systems the dependability of
the system as a whole is heavily influenced by the dependability of man-machine in-
teraction. Consequently, there’s an urgent need to support system designers and soft-
ware engineers with a deep understanding of human resources and capabilities so that
they are able to identify and anticipate potential usability problems during the early



phases of design. In the area of safety critical systems, where formal description tech-
niques are being successfully used for the specification and verification of dependable
systems in addition/alternative to simulation tools, it is important to extend such for-
mal approach to explicitly consider human factors within the design and assessment
processes. In fact, with the user as a key “system” component, the design strategies
also need to reflect/accommodate “human in the loop” as a design pre-requisite. Hu-
mans can interject more unpredictably via combinations of complex activities than
any conventional fault model can ever envision. So the question becomes whether
one needs to adopt a defensive design strategy that constrains what the user can do to
perturb the operations or should one design around all foreseeable situations? In fact,
one of the next major developments in computing will be the widespread embedding
of computation, information storage, sensing and communication capabilities within
everyday objects and appliances. Interacting with such systems will involve multiple
media and the coupling of distributed physical and digital artifacts, supporting a con-
tinuous flow of information. This shift towards more continuous interaction between
user and system is a direct consequence of two aspects of a new generation of inter-
active systems: ubiquity and invisibility. Since interaction devices will be spread in
the surrounding environment, the distinction between real world objects and digital
artifacts will become immaterial. Users will behave naturally as human beings with-
out adopting a simplified behaviour that characterizes a state of technological aware-
ness. Consequently, there’s a need for the systems to adapt to users, to be aware of
their operating context, and to be able to take autonomous decisions to some extent.
Within this framework, human dependency on the correct behaviour of systems in
many (if not all) aspects of everyday life has a growing impact.

3. Emerging applications: The pervasive spread of computer systems in most human
activities and the technological advances have determined an increase of critical ap-
plications calling for dependable services, including new emerging ones, with great
demand for working and affordable dependability. For such applications, such as e-
commerce, financial/banking systems, telecommunication, embedded systems, the
emphasis is not exclusively on pursuing top-level dependability requirements, but
solutions have to be defined which accommodate a number of (more or less) equally
important user requirements in a satisfactory manner. Scalability, heterogeneity,
flexibility, distribution, timeliness are among the most challenging issues of depend-
ability connected with new business and everyday life application scenarios. Assur-
ance of a guaranteed level of QoS is the research objective in such contexts, where
QoS encompasses many aspects such as traditionally-related dependability attributes,
performance-related indicators, and other measures representative of user perceived
quality of service. The connotation of the term safety critical system results also ex-
tended from usual environments, such as flight or nuclear plant control systems, to
denote a larger class of systems that are becoming critical for their impact on individ-
ual’s every-day life. In particular the very large spread of the same type of embedded
systems which are operated by a very large number of non-trained users introduces a
more general concept of safety criticality, which consists of possible catastrophic
failures induced by a large number of individually non-catastrophic failures. For such
systems the concepts of usability and man-machine interface are interconnected and
will be a leading research problem.



4. Middleware platforms: The growing large-scale character of critical systems makes
the correctness of such systems to be more and more dependent on the dependability
of the infrastructures management.  Current research on middleware platforms relates
to enabling interoperation among the various hosts composing the system including
resource-constrained ones, such as wireless personal digital assistants, whose usage
should soon outrun the one of PCs, which further requires to account for the diversity
of the underlying interconnection networks. Introduction of dependability and timing
constraints into middleware platforms is still an open problem.



Creating robust software interfaces:  fast, cheap, good
Now you can get all three

John DeVale & Philip Koopman Carnegie Mellon University

Extended Abstract

Although our society increasingly relies on computing systems for smooth, efficient
operation; computer „errors‰ that interrupt our lives are commonplace.  Better error and
exception handling seems to be correlated with more reliable software systems.
Unfortunately, robust handling of exceptional conditions is a rarity in modern software
systems, and there are no signs that the situation is improving.  In this talk we shall examine
some central issues surrounding the reasons why software systems are, in general, not robust,
and present methods of resolving each issue.

While it is commonly held that building robust code is impractical, we present methods of
addressing common robustness failures in a simple, generic fashion.  Even though a solution
to creating generic hardening wrappers had previously proven elusive, new techniques have
been found that provide a scalable strategy based on extending ideas used in the object-
oriented testing strategy of the Ballista testing harness.  We have developed uncomplicated
checking mechanisms that can be used to detect and handle exceptional conditions before they
can affect process or system state (preemptive detection).  This gives a software system the
information it needs to gracefully recover from an exceptional condition without the need for
task restarts.

The perception that computing systems can be either robust or fast (but not both) is a myth
perpetuated by not only a dearth of quantitative data, but also an abundance of conventional
wisdom whose truth is rooted in an era before modern superscalar processors.  The advanced
microarchitectural features of such processors are the key to building and understanding
systems that are both fast and robust.  We present a quantitative analysis of the performance
cost associated with making a software system highly robust.  The generic robustness
hardening techniques used have been found to make software interfaces robust for less than a
5% performance overhead (often less than 1% overhead) in reasonable usage contexts.

Previous studies have indicated that most programmers have an incomplete understanding of
how to build software systems with robust exception handling, or even the importance of
good design with respect to handling errors and exceptional conditions (e.g., Maxion's 1998
DSN paper). Those studies, while large in scope and thorough in analysis, contain data from
students who in general have little professional programming experience.  This work presents
data collected from professional programming teams at IBM that measured their expected
exception handling performance against their achieved performance.  The data provides an
indication that despite industry experience or specifications mandating robustness, some
teams could not predict the robustness response of their software, and did not build robust
systems.  Furthermore, many of the problems missed were "easy" ones.  This, combined with
similar observations in previous experiments, suggests that something other than simply
telling programmers to write robust code is needed to assure that software is indeed written to
be robust.



Thus the Ballista project has finally reached the point where we feel we have answers to the
basic technical questions we were investigating.  We have learned how to test an API in a
scalable manner; we can wrap modules to achieve 0% robustness failures per Ballista
robustness testing results; we can create robust software with minimal performance impact;
and we can use Ballista to assess not only the robustness of software, but also the
effectiveness of programmers at attaining their desired level of robustness.  Unfortunately, we
have also discovered that simply knowing about these techniques is not enough -- in the
absence of improved methodologies and a quality assurance/testing tool, writing robust code
seems to be a difficult task for even some experience programmers.

We can offer some speculation on important challenges in robustness and dependable system
topics based on what we learned during the course of the Ballista project.  Key challenges for
research and education include:

- Creating effective processes for enabling teams to create robust software interfaces in
practice.  An emphasis needs to be placed on attaining repeatable dependability results for
software even though programmers can have poor understanding of their own ability to
attain robust operation.  While many of the key technology tools and mechanisms are now
in place to accomplish this, significant efforts are needed to design and validate approaches
that will actually work in industrial project environments.

- Methods to assess and reduce software aging problems, including both creating software
with reduced aging vulnerability and putting software rejuvenation on a solid metrics-
based foundation.  (We have reason to suspect that this has been a major source of
robustness vulnerability in the Windows NT code base in particular.)

- Incorporating robustness concepts (and even just testing concepts) into undergraduate
programming courses so that programmers develop a reasonable sense of what is required
to write robust code.  (If we don't teach our students what robustness and dependability
even mean until they reach graduate school, we can hardly expect everyday software
written by everyday programmers to be dependable.)



Pervasive Dependability: Moving Dependable Computing Towards

Mainstream Systems

Christof FETZER, Rick SCHLICHTING

AT&T Labs–Research, 180 Park Ave, Florham Park, NJ 07932, USA

Traditionally, dependable computing has been targeted towards safety- and mission-critical systems. These systems

are typically closed systems that are well maintained and tightly monitored. Dependability is achieved using various

kinds of redundancy during all phases of operation. We argue that dependable computing will need to become perva-

sive as the scale and reach of computing systems and embedded devices inevitably expands. As it does, the tradeoffs

will change and lead to new scenarios, new opportunities, and new challenges. For instance, dependability may be

needed in some low margin systems just to make these economically viable. Our talk concentrates on one example in

this area, dependable home networks.

Maintaining networks that connect computers and smaller devices within the home will be a very low margin

business. Market research indicates that home owners are typically only willing to pay a few dollars per month to keep

their network up and running. Too many service calls made by home owners in response to problems can compromise

the commercial viabiliity of such a business. Hence, dependable home networks that are inexpensive to install and to

maintain are needed. In particular, one has to minimize the manual labor needed to set up and maintain such systems.

This raises several new challenges for the dependable computing research community.

� Automatic Reconfiguration A dependable home network must use inexpensive off-the-shelf hardware with as

little redundancy as possible. Instead of using space redundancy to mask failures, the system has to be able to

reconfigure itself automatically to recover from failures.

� Automatic Diagnosis To facilitate automatic reconfiguration, the system has to be able to diagnose the root

cause of a failure. While automatic diagnosis and reconfiguration are not always possible, the system has to

support easy remote manual diagnosis in case the failure cannot be resolved automatically.

� Automatic Installation Every home will have a different configuration. This not only increases the difficulty of

having automatic diagnosis and reconfiguration, it also increases the difficulty and cost of setting up a system.

Since there is only a very low monthly margin, the system must not incur a high setup cost.

� Automatic Adaptation Home networks will have different applications and usage patterns. The network has to

be able to adapt to these different requirements automatically.

Our talk will conclude with a brief description of how we attempt to address some of these challenges.
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Dependability Challenges in  

Model-Centered Software Development 

David P. Gluch 

Department of Computing and Mathematics 
Embry-Riddle Aeronautical University 

Daytona Beach, Florida 

Visiting Scientist 
Software Engineering Institute 

Pittsburgh, Pennsylvania 
 

This presentation discusses some of the challenges associated with a model-centered software 
development paradigm.  It also outlines some preliminary engineering approaches that may 
address these challenges.  The approaches are adapted from model based verification practices 
[Gluch 98] that can be used in a traditional software development approach.  

Model-centered 
development involves the 
automated generation of 
source code directly from 
models and often includes 
the immediate and (almost) 
exclusive representation of 
requirements as models.  
Translating requirements 
into models is the first step 
in the process. It is a manual 
engineering step that 
involves substantial domain 
knowledge.  Other than code 
this set of models (and 
associated textual material) 
are the only artifacts of the 
design.  Code is generated 
automatically from them.  The model-centered paradigm is shown in figure 1.  Throughout the 
development effort models are increasing detailed and are analyzed until a complete, consistent, 
and correct set exits.  These are used to create the product’s sources coded using automated code 
generation.   

The dependability challenges in this paradigm are to verify and validate the models and to 
validate the product (final executable code) of the development effort.  The artifacts to be verified 
and validated are part of a nexus of models and model components rather than a sequence of 
increasingly refined representations extending from requirements to design to executable code.  
At the heart of ensuring dependability is the analysis of the models and their constituent parts that 
comprise the nexus.  This is especially valuable if confidence in the code generating system has 
been confirmed (i.e. the source code generated correctly and completely represents the model).   

Robust analyses, especially for mission and safety critical systems, will require formal models 
and knowledgeable  software engineers to effectively and efficiently conduct the analysis.  The 
challenges include a need for additional research to identify enhanced analysis techniques, for 
development efforts to define engineering practices that are centered on model analysis 
techniques, the production of commercial systems that support those practices, and the education 
of software engineers in practices and techniques. 

Attributes
• Minimal Textual Requirements
• Transparent Formalism
• Multiple Modeling Views
• Conformance to Standards
• Integrated Tool Support
• Automated Code Generation 

Desired
System

CodeModels

RequirementsRequirements

Figure 1. Model Centered Development
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An approach for a model-centered paradigm that is based upon traditional approaches is the 
formulation of a distinct suite of verification and validation (V&V) strategies, processes, and 
support artifacts. At the heart of the approach are model analysis techniques.  This parallel 
(concurrent) effort is shown in figure 2. The solid arrows show dependencies between the 
artifacts and the evolution of the development effort. The dotted line indicates that the test cases 
are part of the set of verification and validation artifacts. 

In Figure 2 the verification and validation artifacts and associated activities are portrayed as 
concurrent.  Concurrency does not imply 
that V&V is a separate activity. The 
autonomy of the V&V activities may vary.  
They may be highly integrated within the 
project through to being conducted by an 
independent organization (IV&V). 

The nexus of Models (NoM), shown in 
Figure 2, is the complete interconnected 
collection of the constituent parts of all of 
the models required for the design and 
implementation of a system. The nexus 
consists of highly interdependent entities.  

In the development effort software tools 
capture the model elements and textual 
description units that comprise the nexus.  
These tools support some well defined 
(formal or quasi-formal) modeling 
paradigm (e.g. UML).  Given current 
technology, all of the models cannot 
generally be captured in a single integrated 
tool.  There may be some in Rhapsody, 
some in TimeSys or other too that is more 
than a simple configuration management system (i.e., there is some reasonably well-defined 
syntax, semantics, and rules for consistent manipulation of elements of the model). 

 

Source 
Code 

Executables 

Nexus 
of 

Models

V & V
Artifacts

Test
Cases

Model-
Centered
V&V Plan

Requirements

Sources of 
Requirements

Figure 2. Concurrent V&V in a Model Centered Paradigm



Report Correlation for Improved Intrusion Detection and Fault Diagnostics

Walter L. Heimerdinger

Honeywell Technology Center, USA

The steady march of technology continues to increase the complexity and
interdependence of critical systems.  This increases the exposure of such systems to both
accidental and intentional failures.  Intentional or malicious failures are of special
concern because they usually exploit a design fault in a particular feature and the spread
of features expands the opportunities for exploits.

Efforts to detect abnormal situations in complex systems such as oil refineries have
moved from attempts to develop a monolithic estimator to the development a correlator
that processes reports from a variety of localized diagnostic modules.

This approach can be used for intrusion detection in complex networks. Detecting
malicious intrusions in a complex system is an increasingly difficult task.  Intrusion
Detection Systems (IDSs) are being developed and deployed which react to artifacts of
known exploits, but they are ineffective in providing intrusion awareness for a number of
reasons.  First, is the problem of scope.  An IDS that is narrowly focussed tends to react
after an exploit has been successful and often misses exploits that vary from the expected.
A broadly-tuned IDS tends to generate a flood of reports, many of them false alarms,
which tend to overwhelm a security analyst.  Second, is the problem of placement.  An
IDS must be located where artifacts of exploits can easily be observed.  This means that
multiple IDSs must be deployed throughout a system.  Finally, context is a problem for
most IDSs.  An individual IDS is unaware of the locations and functions of the various
parts of a complex network and is unable to track the constant change that takes place in
such a network.

Recent research has applied the approach developed for abnormal situation detection to
intrusion detection.  Each individual IDS acts as a sensor that provides information about
a specific portion or aspect of a network.  Reports from these sensors are correlated in the
context of a comprehensive Intrusion Reference Model of the network, its resources,
services, vulnerabilities, and objectives.  This provides the context for an Evidence
Aggregator to associate hypotheses with IDS reports and to estimate the plausibility and
severity of each hypothesis.  A number of challenges have to be overcome to make this
work, including the normalization of reports from dissimilar IDSs, the maintenance of a
current reference model, and the merging of reports from sensors that have entirely
different scale factors.



Future Automotive Scenarios and R&D Challenges

Position paper
for the IFIP WG 10.4 Workshop on

“Challenges and Directions in Dependable Computing”
St. John, USA, Jan. 2002

Günter Heiner, DaimlerChrysler AG

Considering economical facts and technological trends it is evident that the automotive
industry is a major driver for the economy of the industrial countries and that the
automotive industry itself is increasingly driven by information and communication
technology:
− Taking Europe as an example, in the last five years European automotive industry has

grown 40%, which is double the growth rate of the total manufacturing sector.

− Today software and electronics account for about 25% of the production costs of a
car, in the year 2010 we will expect more than 35%. Today more than 80% of the
functions in a car are already driven by embedded software, and the rate continues to
increase.

On the other hand, every year more than 40000 people die in traffic accidents on
European roads. We estimate that over the next 15-20 years every second accident can be
prevented, assuming the vehicles are equipped with driver assistance systems.
Therefore, the DaimlerChrysler research program “Accident-free Driving” was launched,
which focuses on preventive and active safety strategies. Both approaches benefit from
the progresses of electronics and software which facilitate better sensing and information
monitoring (preventive safety) and improve vehicle dynamics and eventually automated
driving (active safety). Information technology will be used to support the driver and even
to take over many of his tasks:
− Perceive:

sense the vehicle, sense the environment, sense the driver, communicate;

− Think:
classify objects, detect obstacles, interpret scenes, decide;

− Act:
inform and warn the driver, activate safety functions, intervene automatically.

Our vision of “Accident-free Driving” requires further research in enabling technologies,
in particular in safety-critical real-time systems, dependable open communication
systems, embedded control, rigorous design and validation methods, and certification
strategies. Specific dependability research issues are for example middleware concepts for
fault-tolerant systems, composing dependable systems, and validation of advanced driver
assistance systems.



Dependability challenges in pushed-based systems

Yennun Huang
VP of Engineering
PreCache Inc.

Most network applications today use a pull-based client/server model.  In this model, a
server provides information or some other kind of service, and clients explicitly request
specific information or services and synchronous “pull” it from the server.  Clients often
request and consume large amounts of information over long periods of time, and they
periodically check with the server to see if new information has been produced.  This pull
style of information and service delivery is intuitive and straightforward, but has a
number of drawbacks:

! Complicates Interoperability
When clients communicate directly with servers, interoperability has to be
achieved with specialized logic resident on the clients and/or servers.  This tight
coupling of producers and consumers is counterproductive to interoperability,
which is best achieved when an abstraction layer is used to connect producers and
consumers.

! Poor Fit to Distributed Computing Communications
Distributed computing requires loose coupling of producers to consumers, yet the
pull model is most effective where there is a very tight coupling of produces and
consumers

! Limited Scalability
As the number of clients increase, so do the number of network connections and
associated resources that the server must maintain.  Eventually the server becomes
overloaded.  Pull-based models are often used to implement push-based solutions
in an attempt to improve scalability, but these attempts rely on a centralize
message broker, which defeats a significant percentage of the potential scaling
benefits of push.

! Poor Fit of Applications to Multicast
Many clients often wish to receive the same information of a type or format that
does not lend itself to traditional multicast, such as mass e-mail distributions.  As
a result, servers must discretely send duplicated information to numerous clients.

! Request-Based Architecture
Clients must repeatedly check the server to determine if new information is
available.  This process is wasteful for both the clients and the server, since many
of the client checks will be unsuccessful, meaning that clients and server will
engage in many unnecessary and costly interactions.



! Network Model Not Matched to Modern Applications
In many situations, the tight cooperation between client and server, which is
required by the pull model, is not well suited to application requirements.  This
tight coupling is simply an artifact of a network based on an application model
that is decades old.

An alternative to the pull style of communications is the push model, which was
commercially pioneered by TIBCO (Nasdaq: TIBX) in the late 1980’s.  The push model,
as implemented by publish/subscribe middleware, employs the concept of producers and
consumers as a means to simplify the communications underlying distributed computing.

In this model, a server pushes or publishes messages (events), and the publish/subscribe
middleware delivers them to interested subscribers.  Publishers are often decoupled from
subscribers, which is key to the scalability of the technology.  This very loose coupling of
publishers and subscribers allows application developers to implement highly flexible
business systems.  Producer and consumer applications don't have to know about each
other's existence, location, or state.  The benefits are numerous.  Dynamic system
reconfiguration is possible.  One can add new clients or services without interruption, and
participating application components are completely shielded from any implementation
considerations involving other parts of the system.  This allows for an efficient
integration of business systems across different Lines Of Business (LOB) or even across
enterprises.  In fact, publish/subscribe is often considered the most effective solution to
EAI (intra-enterprise) and supply chain management (inter-enterprise).  Producers are
freed of the need to manage consumer-specific connections and consumers become freed
of the need to periodically check with the producer to see if new information is available.
Whether there are one or a hundred or a million consumers, the load on the producer
remains constant, and the efficiency of the consumers is increased.

However, the push-based model has many dependability challenges.  Unless these
dependability challenges are resolved, the applicability of push-based systems is severely
limited. In this talk, I will describe the dependability challenges of push-based systems
and possible solutions for these challenges.



Dependability Challenges
in the Field of Embedded Systems

Hermann Kopetz
Vienna University of Technology, Austria

The dependability characteristics that must be met by a particular embedded computer system
are determined by the requirements of the embedding system, i.e., the given application.

In the last few years, the technological advances and the associated cost/perfomrance
improvements of semiconductor devices and communication technologies have opened a new
application areas for embedded computer systes, such as:

- the replacement of mechanical and hydraulic control system by distributed embedded
computer systems, (e.g., "fly by wire", or "drive by wire");

- the integration of complex computer systems in all kinds of mobile devices

The challenges for the embedded system designer is to meet the dependability requirements
(safety, security, reliability, maintainability) within the given constraints (timeliness,
low-power consumption, mass production) and the cost level of competing technologies.

In particular, the following challenges have been identified
- The provision of distributed architectures that tolerate arbitrary node failures at

competitive costs.
- The validation and certification of ultrahigh dependability.
- The provision of the proper level of security in mass market systems that are

maintained by "non-trustable" institutions.
- Security in normadic systems connected by wireless protocols.
- Meeting the above dependability requirements under the constraints of mass

production.
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DEPENDABILITY:
Information Assurance Research Agenda

Jaynarayan H. Lala
Defense Advanced Research Projects Agency

Arlington, Virginia, USA

Motivation: Information systems in the US, and much of the world, are under constant
threats of cyber attacks.  Every couple of months, there is a media attention-grabbing
cyber event, the latest examples being Code Red and Nimda. Code Red I and II reported
corrupted nearly a million servers over several weeks and caused over $2Billion in
damage. What is imaginable is far, far worse than this everyday reality. Code Red type
worm can be easily “weaponized” to infect millions of servers and other computers, in
much shorter time periods, and carry a much more malicious payload such as the one
carried by Nimda virus. US Secretary of Defense said recently “The surprises we will
encounter a decade from now will very likely be different from the one that struck us on
Sept. 11. To deal with those future surprises, we must move rapidly now to improve our
ability to protect U.S. information systems…..” [1]

State-of-Practice: Systems do not continue operating through most attacks unless
isolated, custom-built using trusted computing components, and protected with access
control. Data can be corrupted, information ex-filtrated, user services interrupted and user
capabilities impaired during an attack . Currently available technologies cannot keep
intruders at bay. Most attacks are not even detected until after damage is done. Systems
are disconnected from networks and/or shut down  to cope with attacks. Owners,
operators and users do not know how well systems will cope with a cyber attack.
Following an attack, tedious and manual data and code reconstruction must take place
and vulnerabilities identified and patched. Systems are unavailable to mission
commander during the manual restoration process. Following manual restoration,
systems are still vulnerable to unidentified weaknesses, known-but-unpatched
vulnerabilities, and misconfigurations. System administrators do not have the time and/or
expertise to keep up with all the patches.

State-of-Art: Fundamental concepts to construct intrusion-tolerant architectures are
being explored under the OASIS (Organically Assured and Survivable Information
Systems) program. It should be feasible to design systems that can maintain data
integrity, confidentiality, and un-interrupted user services for a limited period during an
attack using the following principles:

•  Avoid single points of failure
•  Design for graceful degradation
•  Exploit diversity to increase the attacker's work factor
•  Disperse and obscure sensitive data
•  Make systems self-monitoring
•  Make systems dynamic and unpredictable
•  Deceive attackers
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Future Research Directions: However, much remains to be done to protect our
information systems from current cyber threats and future novel attacks. Following are
some of the goals that researchers should strive to achieve.

Intrusion Tolerant Architectures (Networked Applications and Embedded Systems)
•  Integration of defense-in-depth layers to achieve intrusion-tolerance (avoidance,

prevention, detection/diagnosis, isolation, recovery, reconfiguration, response)
•  Create self-healing systems that can operate through cyber attacks and provide

continued, correct, and timely services to users.
•  Adapt security posture to changing threat conditions and adjust performance and

functionality.
•  Always know how much reserve capability and attack margin are available.

Self-Healing Systems
•  Restore system capabilities to full functionality following an event
•  Autonomously reassess success and failure of all actions before, during and after

an event
•  Autonomously incorporate lessons learned into all system aspects including

architecture, operational procedures, and user interfaces

Theory of Information Assurance
•  Development of taxonomy of vulnerabilities and attacks
•  Methods to characterize cyber threats
•  Assessment methodologies to characterize cyber-survivability, (assurance

attributes, survival time, functionality, etc.) vs. attack space/vulnerability
coverage vs. cost

•  Techniques to optimize information assurance attributes (integrity, availability
and confidentiality) at minimum cost

[1] Donald H. Rumsfeld, “Beyond This War on Terrorism”, Washington Post Op-Ed
Column,Thursday, November 1, 2001.



Research Directions in Trustworthy {Trusted, Dependable} Computing
Carl E. Landwehr

National Science Foundation
Arlington, Virginia, USA

Vision

A society in which:
•  People can justifiably rely on computer-based systems to perform critical functions.

These systems include not only critical national-scale infrastructures, such as the
power grid, gas lines, water systems, air traffic control systems, etc., but also more
localized systems in aircraft, automobiles, and even in home appliances that perform
safety critical functions.  In such an environment, people can live without undue
worry (i.e., securely).

•  People can justifiably rely on systems processing sensitive information about them to
conform to public policy.  Increasing volumes of information, much of it sensitive in
some respect to some party flows on our financial networks, health networks, and
even our library systems, not to mention our conventional communication systems
and our networked systems of personal and corporate computers.  Confidence that
these systems conform to public policy (and that the public policy is understood) will
permit people to make informed and rational citizens about their own information.

•  In both cases, the justification needs to take account of malicious attacks as well as
accidental faults.

Present State

Today’s computing and communications infrastructure does many things well, but suffers
from a number of flaws and weaknesses that make it less than dependable, particularly in
the face of attacks. These shortcomings include (1) latent flaws in widely distributed
software, (2) decreasing diversity of software components, (3) poor technical means for
managing security infrastructure, (4) inadequate technical controls for needed
collaboration policies, (5) lack of convenient, scalable, strong authentication, and (6)
inadequate security mechanisms for new technologies.  Further, the infrastructure lacks
effective means for detecting when these flaws and weaknesses are exploited, and for
responding when such exploitations are detected.

Today’s methods and tools for design, development, analysis, and evaluation of systems
that can satisfy stated security requirements, are inadequate, including  methods for
designing secure systems and for designing effective human interfaces to security
mechanisms in our systems. While past research has yielded some methods for designing
and implementing security mechanisms and secure systems, they are frequently unused
because they cost extra money and take extra time.



Goals

The National Science Foundation seeks to create and sustain the science and technology
needed to discover, develop, and deploy methods and tools for the construction and
analysis of trustworthy systems that can stand up to the pressures of the marketplace.
Instead of railing at the developers and consumers, we need to provide them with
methods and tools that lead to trustworthy systems yet are demonstrably cost effective.
Getting these methods into the marketplace also means having a technically trained
workforce that can produce them and that knows how to exploit them.

Research Directions

The Trusted Computing Program aims to support research in a broad range of related
areas including component technologies – both methods for producing trustworthy
components and identification of useful elements from which trustworthy systems can be
constructed.  Composition and decomposition methods that can help us understand the
properties of systems we have and help us synthesize systems with properties we want
need to be developed.

Systems today are developed and enhanced incrementally, yet incremental changes often
upset overall system behavior. Techniques that can help maintain system trustworthiness
as the system changes are needed.

Many of today’s systems, from video recorders to personal computers, baffle or mislead
their intended users, and user bafflement can lead to misuse of the system with potential
dangerous results.  We need better methods for improving human understanding of
critical system behavior and control.  How can system trustworthiness be visualized,
particularly for operators of critical systems, including geographically distributed
systems?

To build more trustworthy systems, we must be able to model, analyze and predict the
critical properties of systems and components. For example, to provide trustworthy
systems that can succeed in the marketplace, we need system engineering and evaluation
tools that support explicit evaluation of tradeoffs among security design alternatives and
permit prediction of security behavior of large-scale systems.

Conclusion

NSF’s Trusted Computing program is just getting started.  The research areas outline
above are intentionally broad. We’ve had an excellent response to the initial program
announcement; as these proposals are evaluated over the coming months, the program
will come into sharper focus, but the vision will remain on developing a society in which
trustworthy computing is the norm rather than the exception.



(Some remarks about) Dependability of large networked systems

Jean-Claude Laprie — LAAS-CNRS

1) Findings
Comparing wired telephone or computer systems of the 90's, and cellular phones or web-
based services, availability has dropped from 4 or 5 nines to 2 or 1 nine. Are causes due
to a) ignorance of good practices, to velocity in deployment or to b) complexity (e.g., of
server farms) and hacking?

2) Causes of failures
At first sight, they are ranked as follows:
1) Operations, hacking
2) Physical and natural environment
3) Hardware and software
However, root cause analysis of operations and hacking often points at the design of
hardware and software.

3) Some remedies
a) Co-design of human acitivity and system behavior. All too often, and in spite of
accumulated evidence by cognitive ergonomists, the human-system interaction comes last.
Co-design ranges from tasks allocation to reciprocal monitoring and recovery.
b) Diversity. The decreasing natural robustness of both hardware and software make
systems based on uniform solutions fragile. Hence a need for revisiting diversity at all
levels of a system.

4) Some gaps
a) Composability. Composability of dependability properties is still perfomed on a largely
ad-hoc basis, and very few mathematically formal results have been established, thus
limiting transferability and durability.
b) Metrology. This a prerequisite for substantiating current and future research (current
gaps? expected future threats? identified from the exploitation of measurement trends),
that needs a widely accepted basis for data collection and measurements of accidental and
malicious events.
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Among the many open issues and challenges raised with dependable computing, I would like 
to offer to consider two classes of problems and possible directions. 
 
One class is in connection with the “requirements capture” processes followed in projects 
concerned with computer-based systems. The issue examined is how to avoid faulty 
processes, which are known to lead to project setbacks and/or system failures. This class 
encompasses issues of an interdisciplinary nature. 
 
Another class is related to the following issue, raised in computer science & engineering: 
Which computational models for designing applications based upon mobile computing, for 
designing autonomous complex systems, bound to meet dependability and real-time 
requirements? The examination of respective model coverage, as well as the concept of 
“model binding”, permit to identify potentially promising directions. 
 
 
1. Can we avoid faults in requirements capture processes? 
 
A number of studies and reports about computer-based systems/projects conclude that, too 
often, project setbacks and/or operational system failures are due to faulty requirements 
capture processes. Faults made during the requirements capture phase, which is the very first 
phase in a project, are very difficult to catch in subsequent phases. Such faults inevitably lead 
to difficulties, which translate into (1) project setbacks, e.g. contractual deadlines set for 
deliverables being missed, and/or testing phases being failed, and/or excessive costs – due to 
the need to redo some of the work tested “incorrect”, and/or project cancellations, (2) failures 
of operational systems. 
 
Two recent examples in the space domain are the maiden flight of European satellite launcher 
Ariane 5 (1996), and the US Mars Climate Orbiter mission (1998). Causes of failures will be 
briefly presented. 
 
When comparing the costs involved with failures due to such faults, and the reasons why such 
faults go through current processes, one is led to conclude that it is of utmost importance to 
improve current practice, so as to increase “projects dependability”, as well as systems 
dependability. 
 
Such faults are human made. It is well known that communication in natural language almost 
inevitably leads to ambiguity and incompleteness. Unfortunately, any real project starts with 
human communication. 
 
Over the years, many attempts have been made at improving the quality of the requirements 
capture processes. Gathering experts from various areas – e.g., psychology, ergonomics, in 
addition to computer scientists and engineers – has been tried (see, e.g., ACM SIG CHI). For 
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a number of years now, we have been witnessing a strong move in favor of more formal 
approaches to requirements specifications. Professional organizations, such as INCOSE, or 
professional communities, such as the IEEE ECBS community, have working groups devoted 
to these issues. Nevertheless, failures and budget overruns still occur too frequently. 
 
We will report on recent experience gathered with real projects where a non formal method 
based upon proof obligations has been used, with special focus on three space projects, one of 
them funded by the European Space Agency, the other two funded by the French Space 
Agency. Reasons why proof obligations help in eliminating faults while conducting a 
requirements capture phase will be detailed.  
 
 
2. Which computational models for dependable and real-time mobile computing, 
autonomous complex systems? 
 
Soon, real-time applications based upon mobile processors will be emerging. Emerging also 
are autonomous complex real-time systems, such as, e.g., those systems which are designed to 
redefine their missions on- line (autonomous re-planning during remote space missions, earth-
based systems operating in hostile environments).  
 
These relatively new paradigms raise challenging issues, such as the refinement of 
conventional failure models in the case of wireless group communication/cooperation, or how 
to perform on-line V&V in the case of autonomous space systems (see, e.g., the NASA 
RIACS Workshop, Dec. 2000). 
 
Features that are common to these new applications/systems are highly varying 
communication latencies, and/or a significant degree of uncertainty associated with any 
prediction regarding such latencies. In other words, a design conducted and proved correct 
considering some time-based or synchronous computational model has a poor coverage.  
 
Many techniques, constructs, algorithms, solutions, to problems in fault-tolerant computing 
rest on timing assumptions, i.e. on some form of (postulated) synchrony. Conversely, there 
are impossibility results established for the pure asynchronous computational model (no 
timing assumptions at all). Which is unfortunate, given that the coverage issue does not arise 
at all with this model. 
 
Hence the question: How “close” can we get to the pure asynchronous model, and still be able 
to design highly dependable and real-time mobile/autonomous applications/systems? 
 
Another question arises: If high dependability can be achieved with asynchronous designs, is 
there any severe penalty incurred in terms of efficiency? In other words, can such designs be 
as efficient as synchronous designs?  
 
We will report on recent work, which shows that asynchronous designs should be favored. 
The issue of how to prove timeliness when designing in an asynchronous computational 
model will be addressed. (Paper accepted for publication in 2002 in an IEEE Transaction). 
 
 
Of course, if necessary due to time constraints, only one of these two proposed topics may be 
presented. 
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1. Introduction

An analysis of the challenges and directions for dependable computing,
to be of any utility, must take into account the likely future, and must
address not just technical questions concerning what will be the most
interesting and timely topics, but also socio-technical questions,
concerning the impact (or lack thereof) that successful work on such
topics might have.

2. Three Laws

As Dan Quayle once said, predictions, especially of the future, are very
difficult. However, I believe that in this task we are aided by not just
one, but three “natural” laws, the names of which form the pleasant
alliteration: “Moore, Metcalfe and Murphy”. The “3M” Laws will, am
sure, all remain in force for at least a number of years to come – and
they provide a very convenient hook on which to hang the rest of this
little account.

Moore’s original law [4] stated that:

“The number of transistors per chip will double every eighteen
months”.

 This was in 1964, and at the time Gordon Moore (co-founder a few
years later of Intel) suggested that the law would remain valid until
1975. Though some years later the trend slowed a little, to a “mere”
doubling every two years, his law still seems to hold true – and is
apparently self-fulfilling. Indeed, as each year passes, it would appear
that the scientists and industrialists most directly concerned vote for a
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further year’s extension of the law, by confirming their belief that it
will continue to hold for at least the next ten years or so. Moreover, the
general idea of the law seems to apply to the other crucial hardware
technologies involved in computing, namely digital communications,
and magnetic storage devices.

It is this amazing and continuing rate of technological development that
has fuelled such an enormous growth in the amount and variety of
computing, through the impact it has had on computer performance,
and on power and space consumption, and hence on both costs and
capabilities.

Metcalfe’s Law is perhaps not quite as well known as Moore’s law. It
was coined by Robert Metcalfe, one of the inventors of the Ethernet. His
law can be stated as:

“The usefulness of a network varies as the square of the number
of users.”

An alternative version has been given by Tidwell [8]:

“The power of the network increases exponentially by the number
of computers connected to it. Therefore, every computer added to
the network both uses it as a resource while adding resources in a
spiral of increasing value and choice.”

As others have remarked, it is the combination of Moore’s and
Metcalfe’s laws that lies behind the frantic growth of the Internet.
Indeed, I would suggest that it is not too much of an over-simplification
to say that Moore’s Law made this growth possible, Metcalfe’s Law
made it happen.

The third law is, I believe, of much earlier date than Moore’s and
Metcalfe’s laws – to the point that it is not all clear who first coined it,
or whether his or her name actually was Murphy. It has a number of
forms and variants. However the most common is:

“If anything can go wrong, it will.”

One of the most frequent alternative versions, or addenda, is;

“If there is a possibility of several things going wrong, the one
that will cause the most damage will be the one to go wrong.”

The above wordings are just the first, and best, of many given in the
Murphy’s Law Web-site1. One could perhaps describe Murphy’s Law as

                                                

1 http://www.fileoday.com/murphy/murphy-laws.html
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being, like Moore’s Law, merely an experimental law – however it
seems regrettably safe to assume that there is no chance of it ever being
repealed.

The whole subject of dependability is both bolstered and bedeviled by
Murphy’s law. It motivates the need for system fault tolerance, but
unfortunately also applies in principle, and often in practice, as much to
any fault tolerance mechanisms as it does to the systems they are
intended to protect. But it is certainly the case that the dependability
community is in effect much more conscious of, and constructively
concerned about, Murphy’s Law than many of the researchers in other
branches of information technology.

The merit of bracketing Murphy with Moore and Metcalfe is that it acts
as an antidote to the hubris that all to often surrounds discussion of the
technological futures that are more or less directly a consequence of the
first two laws. For example, at a recent IST conference, a panel of very
senior industrialists enthusiastically discussed the “The Ambient
Network”, a newly-coined term that that they used to describe the
situation they were predicting would arise of there being in effect a
single system of billions of “networked information devices” – of
everything connected to everything. In the whole debate the only major
challenge (i.e. problem) standing in the way of creating The Ambient
Network that was mentioned, by any of the very eminent speakers, was
“usability” - there was not a single mention of “mis-usability” or of
“dependability”, leave alone of the possibility of large scale failure, e.g.
of a Europe-wide set of blue screens, caused either by accidental or
malicious faults!

In fact, although it is now commonplace to posit a world in which
“everything is connected to everything” many of these connections will
in fact be transient, due for example to the use of mobile devices.
Indeed many of the connections will be unexpected and unwanted – and
hence a major source of undependability. Thus it is certainly not the
case that the whole population of inter-connected computers and
computer-like devices will be components of one defined system.
Rather, there will be a huge number of separately designed systems
(ideally all carefully pre-specified and designed), but also systems-of-
systems - both designed, and accidental (though even such latter may
have people becoming dependent on them). And many of the
dependability problems that arise will be caused by uncontrolled
interactions between these systems, not necessarily via direct electronic
links. Indeed, in what follows, I will use the term system not in the
narrow sense of computer system, consisting of just hardware and
software, but in the sense of computer-based system. (By this term I
mean a system that comprises both computers and the humans who
directly use, control, and are affected by these computers.)
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However, unforeseen indirect effects, and social effects of the above
trends such as public attitudes, and the activities of governments and
(certain) companies are much less easy to forecast.

3. The Wider World

We need to consider the wider environment in which computers and
computer networks will exist, and whether/how it might differ from
today’s world – a world in which public attitudes to dependability in
general are confused and confusing. For example, we are in a world in
which it has been acceptable to allow an automotive industry to develop
whose products are implicated in the deaths of 40,000 people annually.
Perhaps because such deaths typically occur in ones and twos, rather
than in hundreds, and because drivers assume they are individually in
direct control of the situation and hence their destiny, individual road
accidents cause much less concern and attract much less publicity and
official attention than plane crashes, even ones in which few if any
people are killed. Which of these widely differing views is the more
likely to be representative of attitudes to the crashes of computers, in
years to come? (Similarly wide variations exist in public attitudes to
system dependability, even when lives are not at risk, e.g. concerning
the value to be attached to privacy. And it is evident that the
dependability levels that are currently tolerated in desktop computers
would not be acceptable in television sets – a situation which may or
may not change enough to affect the desktop computer market.)

Government pressures often have detrimental effects regarding system
dependability, indeed in many kinds of systems. For example, so-called
“efficiency savings” can lead to systems that are far more fragile than
their predecessors – simple queuing theory explains what is likely to
occur when hospitals, for example, are forced to run too close to
maximum capacity even in situations of normal load. And automation,
though it can reduce the frequency of minor failures, often does so at
the cost of occasional much more costly failures – railway control and
signaling, at least in the UK, are a case in point.

One further comment regarding government pressures. The impact on
dependability, and in particular security, research of recent government
actions particularly in the United States is much more difficult to
predict. The previous balance that was held between individuals’ rights
to privacy, and the state’s ability to monitor and control data
communications has shifted abruptly. What effects this will have on
government and personal behaviour, and on various aspects of the
design and operation of networked computer systems, remains to be
seen. It has been argued, by the Robust Open Source software
movement, that development of a dependable international computer
and networking infrastructure is being impeded by government and
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commercial policies – and that the solution lies in the hands of dedicated
volunteers working on open source implementations of the necessary
system components. It this still the case, assuming it ever was?

All this is at a time when it is commonplace to remark that individuals,
organizations, governments, indeed society as a whole, are becoming
ever more dependent on computers and computer-based systems. In
many cases such dependence is proving satisfactory, or at least
acceptable. However, given our closeness to the technologies involved,
we cannot ignore the potential dangers of allowing such dependence to
exceed the levels of dependability that can be achieved in practice, or
the difficulties of building complex systems of predictable
dependability.

Allied to this is the fact that we are having to live in and try to cope
with a world in which, to quote Dirk Gently, Douglas Adam’s Holistic
Detective: “everything is deeply inter-twingled” – but as computers and
computer networks play an ever greater and an ever less visible role,
the extent and speed of system interconnection is greatly increased, and
much more difficult to deal with. Luckily, there is now a growing
recognition by governments, if not yet the general public, of the
dangers facing our various global infrastructures, such as finance,
power, telecommunications, etc., as these become more closely
interconnected through data networking. But the pressures for ever-
greater interconnection continue, and dangers increase.

For example, plans for electronic highways, in which computers rather
than drivers are responsible for maintaining separation, might have a
very beneficial effect on the rate of relatively minor accidents. But how
catastrophic will be their possible major failure modes? And what effect
might such failures have on public perceptions of the risks of road
transport, and indeed of public attitudes to the information technology
industry?

Commercial pressures, especially in unregulated industries, rarely
assign dependability a very high priority. The personal computer
industry pays far more attention to issues of functionality than security,
for example. Hence the proliferation of numerous unnecessarily
insecure software technologies in recent years, and the consequential
greatly-enhanced impact of viruses and worms.

The commercial software world, left to its own devices, will continue to
obey the economic law which in effect states that in industries with very
high development costs and virtually zero production costs, it is very
difficult for new entrants to dislodge, or even co-exist alongside, a
prominent market leader. In such situations competition becomes a
much less effective force for promoting improvement to system
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functionality, performance and dependability than might otherwise be
the case.

Finally, another characteristic of the current commercial software,
indeed the whole personal computer, world that is of particular
relevance to dependability is the increasing dominance of (ad hoc)
standards. Uniformity, for example of programming and user
interfaces, presumably has a beneficial effect on the rate of at least
certain types of accidental fault, e.g. by application programmers and
by users. However, this lack of diversity contributes greatly to the
impact of malicious faults such as those created by virus writers. Mono-
culturalism seems to be as dangerous in the software and hardware
world as it is elsewhere.

4. And So?

Against such a background, it is surely insufficient to concentrate on
interesting technical dependability challenges, and simply on defining
and prioritizing possible future computer science dependability research
projects. (In any case, this usually results merely in a list that bears a
strong resemblance to the author’s current projects and proposals.)
Rather, it is I suggest also worth trying to discuss how any such
programme of future research should:

(i) be chosen and conducted so as to maximize the chances of
effective subsequent industrial and public take-up

(ii) be situated within its overall research context, e.g. within the
IST programme as a whole

(iii) consider what else the research community can do to use its
expertise to achieve a wider social benefit.

In subsequent sections, I address each of these points briefly, though
first I will attempt the obligatory discussion of a technical agenda.

4.1. A Technical Agenda

A useful recent summary of the present state of the art, and of various
authoritative views of future requirements for dependable computing
systems, especially large networked server systems, is given by [5]. A
welcome common theme is the need to take a wider view of such
computing systems, allowing more fully for the problems caused by and
to their administrators and maintenance personnel. Networked servers
typically aim at achieving essentially continuous operation round the
clock, despite such failure-prone activities as upgrades and maintenance,
and the frequent installation of new hardware and software, as the
service expands. There is thus a need to relieve the burdens on
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administrators, especially in dealing with failure situations, by achieving
much more automated and faster means of recovery after system
failure, or “human-aware recovery tools” as Patterson and Brown term
them.

In fact, the approach the authors advocate, “rewind, repair and redo”,
involves traditional transaction-processing reliance on backward error
recovery. The possibility that the root cause of a problem might be
external and undetectable by input validation, or that the world outside
the system might not be capable of simply backing up after being
supplied with erroneous results, is ignored. (These are the more general
problems first addressed by Davies [1] in his pioneering work on
“spheres of control”, work that has strongly influenced our ideas on CA
actions [9], and which I would argue is a more appropriate basis for
planning recovery in general computer-based systems.)

Furthermore, recent world events surely motivate increased concern for
the problems of making all types of computer system more resilient in
the face not just of accidental faults, but also of deliberate attacks,
though in the computer world such attacks are as likely to be made by
insiders as by external agents. The provision of means, especially
automated means, of tolerating attacks is far from straightforward, even
just for communications systems, even though for years these have been
designed with this as one of their objectives. For example, there are
widely differing opinions as to the relative success with which the
conventional telephone system and the Internet largely withstood, in
their very different ways, the destruction of the World Trade Center.

In now remarking that a concern for the possibility of attacks should be
applied not just to closed systems, but to systems-of-systems, and rapidly
evolving systems-of-systems at that, I am in danger of being accused of
simply and unimaginatively suggesting that two existing IST projects
with which I am associated, MAFTIA (Malicious- and Accidental-Fault
Tolerance for Internet Applications) and DSoS (Dependable Systems of
Systems), should be succeeded by a project that combines their technical
aims. In fact I’d like to claim that this is not lack of imagination, but
rather an indication of the farsightedness of the original MAFTIA and
DSoS proposals!

Another priority I’d like to advocate is that of investigations of the
problems of making appropriate allocations of responsibility
(concerning functionality, error detection, and fault tolerance) between
the computer and human elements of a computer-based system so as to
achieve effective overall dependability. This, I am afraid, can also be
criticized as simply an obvious extension of another large existing
project led by Newcastle, namely DIRC, the EPSRC-sponsored
Dependability Inter-Disciplinary Research Collaboration. However,
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ambitious though DIRC is, there is plenty of room for more projects
that address various aspects of the socio-technical problems of achieving
and guaranteeing whatever is needed in the way of balanced usability,
dependability, cost, performance, etc., in various organizational
contexts.

In line with earlier remarks, there is evident need for more research
aimed at alleviating the dependability problems of systems that are made
up of mobile, and often inaccessible, components. (A nice such problem
occurred here recently, involving a laptop that was being stored
temporarily in a secure cupboard while efforts were being made to
safeguard the campus network and systems from attacks caused by the
Code Red virus. When the laptop was reconnected, the safeguards which
should have prevented it from becoming infected and then attacking the
network itself failed - for complicated but understandable reasons - to
get installed, and the laptop itself became an attacker, inside the campus
firewalls.)

Research is also needed on the dependability of systems whose
boundaries, and specifications, are ill-defined. Much of the natural and
the human world manages to cope with failures in such systems – a
study of how this is achieved might lead to a better understanding of
how to achieve this in systems that incorporate computers. Properties
akin to self-stabilization [2] are perhaps what should be sought and
investigated. Similarly, many large systems are continually evolving, as
new functionalities and facilities are added – it is a major problem to
retain the flexibility and scalability that such systems need to have while
at the same time ensuring that high levels of dependability are
maintained.

All the above research areas need to be buttressed by research into
improved means of evaluating, and ideally predicting, the various
different facets of system dependability, including what is probably the
most difficult one to evaluate, namely security. Such evaluation involves
gaining much greater understanding of such slippery concepts as
”system complexity”, hopefully matching the sort of progress that has
been made in recent years in understanding the concept of diversity.

The stress that I am placing on avoiding narrow concentration on the
problems of “mere” computer systems, but instead including concern
for the human element, means that the search for applicable techniques
and research insights need not be limited to the computer science
literature. (As a parenthetical comment, let me mention that,
regrettably, computer “scientists” have for some time all too often
regarded it as unnecessary to seek out and read about any research that
is more than ten years old – now the tendency seems to be to limit one’s
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attention to reports that are on the web, and findable in less than a
minute or so using Google.)

Rather, the literature of economics, general systems theory and
cybernetics, is also likely to be of use. (See, for example the survey by
Heylighen [3].) One directly relevant example, suggested by my
colleague John Dobson, is the concept of “requisite variety”, which
comes from general system theory, and which can be used to understand
some of the problems of interconnecting systems in such a way as to
ensure that that errors signalled by any of the systems can be responded
to suitably by the other systems.

4.2. Recommendations Affecting Take-up

The reflections I have under this heading are obvious in the extreme.
Any dependability research project which is aiming to produce
techniques or mechanisms that it hopes others will take up needs to try
to ensure that such take up will be as easy, and as quick to deliver
evident benefit, as possible. In general it easier to attract attention to a
demonstratable mechanism, whether it be a system component, or a
software tool that aids some aspect of the task of designing dependable
systems, than to a technique that has to be taught and learnt.

System components that can readily be integrated into existing systems
have obvious advantages. This is one of the advantages of transparent
mechanisms, such as the now almost forgotten Newcastle Connection,
which could be added to each of a set of Unix systems to join them
together into what appeared to be a single Unix system without needing
to change any existing system or application code. The modern
equivalent of the technique used is “reflection” used as a means of
imperceptibly adding various sorts of dependability characteristics to
object-oriented application programs.

Dijkstra, at the 1969 NATO Software Engineering Conference [7], said:

“But there are a few boundary conditions which apparently have
to be satisfied. I will list them for you:

1. We may not change our thinking habits

2. We may not change our programming tools

3. We may not change our hardware

4. We may not change our tasks.

5. We may not change the organizational set-up in which the
work has to be done.
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Now under these immutable boundary conditions, we have to try
to improve matters.”

At the conference his remark was greeted by applause, in which I joined
– my view now is that the art is to see how to achieve a worthwhile
effect while obeying as many of these boundary conditions as possible.

As regards achieving technology transfer of a technique, this I believe is
most readily achieved by transferring personnel skilled in that
technique. Alternatively it typically involves extensive effort in the
preparation and delivery of teaching materials. An important milepost is
passed when someone other than the researcher can then undertake
further such efforts successfully.

4.3. The Research Context

When the European Dependability Initiative was being formulated, as a
contribution to the planning of the IST Programme in FW-5, it was
strongly argued that it was important to ensure that adequate attention
was paid to dependability issues in all relevant research projects,
especially those in particular computer application areas. The aim was
two-fold: to ensure that state-of-the-art dependability techniques were
employed wherever needed, and that any novel and challenging
dependability requirements were identified, and brought to the attention
of dependability researchers.

The mechanism we suggested was simple. It was that there should be a
budget, under the control of the dependability directorate, quite separate
from its budget for dependability research projects, that could be bid
for by other research directorate. Such bids would be for use to
augment deserving research projects in their areas, so as to ensure that
these projects incorporated suitable dependability-related activities in
their plans, and interacted as needed with specialized dependability
projects.

Regrettably, this suggestion was not accepted, and to my mind a very
useful opportunity was lost.

4.4. The Wider Scene

There are obvious comments that can be made about the importance of
people with expertise in system dependability (i) taking an active part in
efforts aimed at enhancing public understanding of science, and (ii)
attempting to bring suitable influence to bear on relevant government
and commercial policy-forming activities, and to ensure that wherever
possible the best current technical, and socio-technical, practices are
employed.
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However, I will otherwise largely confine my remarks under this
heading to the importance of the idea of “closing the loop”, in order to
ensure that system designers, and relevant authorities, are well-
motivated to treat dependability issues with the attention they deserve.

One of the neatest examples of loop-closing is Edward de Bono’s
suggestion that, in the interests of the environment, factories should take
their water intake from a river downstream of any outflow from them
to the river. Closer to home, I understand that in the R.A.F. it is, or at
least some years ago was, the rule that when a plane is handed back to a
pilot after maintenance, the pilot has the right to insist that the
maintenance engineer who signed the certificate that the plane is now
again airworthy comes on the first flight.

Years ago I myself experienced the benefits (to the compiler I and a
colleague producing) of working in the same large office as the people
who had to use this software. Of course it is better still when a software
developer is an active user personally of the software he or she is
developing, and so is forced to be directly aware of its weaknesses. This
is probably one of the reasons behind the success of (some of the) open
source software projects. However, there is an evident danger – it is
equally important that developers should also be aware of what is being
achieved elsewhere. Thus I suggest that the developers of operating
system A, as well as being active users of system A, should also have
reason to keep aware of developments in system B and C. (The letters
A. B, and C can be replaced by “Windows”, “MacOS”, and Linux, for
example, à choix..)

Unfortunately, such loop-closing is not always appropriate – the
developers of a nuclear reactor’s safety shut-down software are not
going to be its users, though of course I suppose they could be forced to
live near the reactor! But in all seriousness, it does seem to me that one
of the most major issues is not that of research into new ways of
building more dependable computer systems, valuable though such
research can be. Rather it is that of trying to ensure that all in relevant
positions of influence pay appropriate attention to dependability aspects
of significant existing and proposed computer-based systems.

A final (obvious) point to be made is that dependability is,
unfortunately, not usually taken seriously until there is a failure. At one
end of the scale, few individuals take advice regarding back-ups
seriously until they first lose some of their precious files. On a national
or global scale, such a change of attitude seems to require an incident
seriously adversely affecting either a very large number of people or a
smaller number of sufficiently important people. But computer systems
vary so greatly concerning the seriousness of their possible failures,
from situations in which failures might be almost viewed as beneficial,
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due to the improvements they prompt, to ones in which failure would be
so catastrophic that it must be avoided at all costs. Petroski’s analysis of
the effects of civil engineering failures on the progress of civil
engineering [6] is perhaps one of source guidance on these issues.

5. Concluding Remarks

By way of concluding remarks I simply re-iterate that in considering
future dependability research initiatives, I think that it is vital (i) to take
full account of (all three of Moore’s. Metcalfe’s and Murphy’s Laws,
and (ii) to take an adequately broad view of system dependability, and
of system research, and the environments in which it is carried out and
for which its results are intended.
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To a large extent, the system modeling and dependable distributed system communities have evolved sepa-
rately.  Much progress has been made in each community, but (in my humble opinion) with very different
ways of conducting research.  In the modeling community, the work has been quite formal, with much con-
centration on developing mathematical techniques for the solution of large systems.  In the dependable dis-
tributed systems community, there as been both formal and informal work, but the majority of practical de-
pendable system middleware has been developed in a very experimental way, which stresses the importance
of prototyping and demonstration, but lacks formal assessment of the degree of dependability that has been
achieved.  The formal and theoretical nature of system modeling research has resulted in a large gap between
what is known in theory, and what can be applied by a practitioner.  The informal nature of the dependable
distributed system community has led to practical use of many of the developed techniques, but questions
remain about the goodness of proposed designs, and algorithms designed to respond to changing system re-
quirements and conditions (via adaptation) are largely ad hoc.  In this presentation, I will argue that it is time
bring these communities together in two ways.

First, it is time to develop modeling methods and tools that can be applied to practical dependable distributed
systems.  Techniques currently exist that can be used by experts to meaningfully assess the dependability of
large-scale systems, but they require much expertise and creativity to apply.   Before they can be applied in a
widespread way, work is required on model representation techniques, model composition techniques, and
model abstraction techniques that can focus the effort of model solution on system details that are important
with respect to the measure being considered.  Practical model representation techniques may need to be
domain specific, and help from the distributed system design community will be necessary to help define
appropriate domain-specific formalisms.  Composition techniques need to be developed that are both natural
to the dependable distributed systems community, and preserve properties that aid in the solution of a com-
posed model.  Abstraction techniques are needed to preserve parts of a system design that important, with
respect to a particular dependability measure, while removing unimportant details.  In short, techniques are
needed that can turn the current “art” of system modeling into a “science.”  If a science of system modeling
can be achieved, techniques that currently require an expert to apply could be interfaced to existing software
and hardware design tools, so that they can become an integral part of the design process.

Second, the system modeling and dependable distributed system communities should come together to build
systems that use online models to adapt as necessary in order to provide specified performance and depend-
ability properties to applications.  The idea of the use of a system model in control theory is longstanding,
but has not typically been used in distributed software systems, perhaps due to their complex, non-
continuous, nature, or the perceived cost of on-line model solution.  Recent results show that the cost of on-
line solution need not be prohibitive, and that models can be used in an on-line fashion profitably to guide
adaptation at many time scales in dependable distributed systems.  The goal in this case is not to build mod-
els that yield accurate measures in an absolute sense, but build those that can be solved quickly, and used to
make decisions on how to adapt.  Much work is needed to understand data needs to be collected to serve as
input to on-line models, how models can be constructed that can be solved quickly, yet make appropriate
decisions, and how models can be constructed in a hierarchical fashion, such that decisions in various parts
of a system can be made in a consistent way, without costly global state knowledge.  If successful, this work
can result in systems that can act in a largely autonomous fashion, healing themselves so that they can con-
tinue to deliver requested services when unintentional and malicious faults occur.
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ABSTRACT

Last February, the European Commission proposed the multiannual Framework Programme 2002-
2006 (in short FP6) for research, technological development and demonstration activities aimed at
contributing towards the realisation of the European Research Area policy. The main principles,
research priorities and innovative aspects of FP6 would be presented to highlight how the
European Initiative on Dependability has a unique opportunity to further growth and develop its
scope and ambitions.
The characteristics of the new implementing instrument called “Integrated Project” provide an ideal
and coherent framework to promote dependability in Information Society by stimulating
innovative, multidisciplinary and global RTD to tackle the scale issues of dependability connected
with new business and everyday life application scenarios. Important aspects of these scale issues
would be those associated with the increasing volatility and growing heterogeneity of products,
applications, services, systems and processes in the digital environment.
The state of play and the preliminary results of the work to consolidate, mobilise and stimulate the
European dependability constituency on pursuing this opportunity would be addressed.



High End Commercial Computer Fault Tolerance:
Trends and Directions

Lisa Spainhower, IBM Corp.

I have collected and evaluated both machine-generated and human-recorded data on the
source of computer system failures.  Stepping back from the individual instances permits
observation of some general lessons:

o  Without sufficient system management discipline, even the best technology
cannot deliver high availability.

o  The best system management discipline cannot overcome technology
shortcomings.

Conventional wisdom holds that software is so overwhelmingly the root cause of
unplanned downtime that it is unwise to invest in robust hardware; actual data indicates
that this isn’t accurate.  What is true is that the common level of hardware fault tolerance
has increased a great deal in the past 5 years.  I will also describe the practical fault
tolerant methodologies that have been implemented and discuss their effectiveness.

As well as the change within the past five years, it is instructive to review the predictions
for where the industry would be with respect to fault tolerance and high availability in
2001 which were made in the mid 1990s.  High availability clusters built on open systems
standards, for example, were expected to proliferate beyond what has actually occurred
and the difficulty in implementing them has been a surprise. A discussion of lessons
learned, particularly those which were surprises, is a key component of the presentation.

Next it’s time to look ahead while considering what is known about the nature of
computer system failure, effective fault tolerance, and what has not turned out as
expected.  I will discuss extensible technologies and areas where new innovation is
needed.  Hopefully, this can spur academic research as well as industry technology.
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Abstract
We discuss quantitative metrics for evaluating Internet services: what should we quantify,
monitor and analyze in order to characterize, evaluate and manage services offered over
the Internet? We argue that the focus must be on quality-of-experience and, what we call,
quality-of-business metrics. These QoE and QoBiz metrics quantify the user experience
and the business return, respectively, and are increasingly important and tractable in the
Internet age. We introduce a QoBiz evaluation framework, responding to the emergence
of three types of services that impact quantitative evaluation: business to consumer
services, business-to-business services, and service utility through service providers. The
resulting framework opens avenues for systematic modeling and analysis methodology
for evaluating Internet services, not unlike the advances made over the past two decades
in the area of performability evaluation.

Quantitative Evaluation in the Internet Age: What is Different?
Who cares if your web-shopping site has an availability of ‘three nines’? 99.9%
availability corresponds to a little over eight hours of total down time in a year, but most
customers do not care, nor do line-of-business managers. The customer only cares if the
site is up when she wants to shop. Moreover, if the site is down for a few seconds during
a shopping session, she will only care if it makes any difference for the execution of her
ongoing tasks. The business manager only cares if she loses business because of down
time, and for how much money this could have been prevented.

From the above example, it follows that system metrics such as availability are not
sufficient to evaluate an Internet service. Instead, user experience metrics and business
metrics are necessary. Surely, this is not a new realization—at any point in computing
system history, there have been implicit considerations about user and business
requirements when evaluating systems and services. For instance, decisions about
upgrading computer equipment routinely consider user needs and costs. However, the
problem has always been that the relationship between system quality, user experience,
and business cost is hard to make concrete. QoS, QoE and QoBiz analysis has therefore
never been done in systematic and integrated fashion.

In the Internet age this must change. The relation between QoS, QoE and QoBiz has
become very apparent, and more easily to discern. In the web-shopping scenario, the user
experience directly influences how much shopping the customer does, and how much



money the business makes as a consequence. Results are available that relate response
times with user behavior and business loss. In the Internet age, not only are QoBiz
metrics increasingly important, they are also more directly measurable and therefore
better tractable.

The crucial difference in the Internet age is that people, processes and institutions play
roles that are closely integrated with the system (that is, the Internet) itself. They form
ecosystems in which business is conducted through technological means (business-to-
consumer as well as business-to-business). In addition, technology services are being
provided and consumed in similar fashion as electricity and water (the service utility
model). In particular, we identify the following trends as drivers for QoBiz management:

•  Integration of the user in Internet ecosystems (B2C)
•  Integration of enterprise business processes in web-service ecosystems (B2B)
•  Emergence of the service utility model (service providers/xSPs)

We discuss the metrics that are suitable to evaluate the ecosystems that arise from these
three trends. Intuitively, B2C naturally leads to QoE analysis, and B2B requires QoBiz
analysis. We introduce a more abstract notion of QoE and QoBiz, which allows us to
construct a general framework in which every participant in an Internet ecosystem deals
with QoS, QoE and QoBiz concerns at its own level of abstraction. That is useful for
structured evaluation of service providers, which may have various participants
interacting in a joined ecosystem (ISP, ASP, MSP, CSP, HSP, etc.). Eventually, we hope
that the proposed framework is a useful steppingstone towards generic methodology and
software support for QoBiz evaluation of Internet services.




