
Designing and Assessing Adaptive Dependable
Distributed Systems:

Putting the Model in the Loop

IFIP Working Group 10.4 on Dependable Computing,
St. John, USVI, January 5, 2002

William H. Sanders

University of Illinois at Urbana-Champaign
whs@crhc.uiuc.edu

www.crhc.uiuc.edu/PERFORM

Motivation

• Modern dependable distributed systems are often intended to serve
multiple users, whose (quality of service) needs are not known at design
time, and may change over the course of a period of use

• Such systems are inherently complex, and cannot be designed to meet a
changing specification using traditional ad hoc means

• Modeling methods and tools that can be applied to practical
dependable distributed systems are needed

• Changing quality-of-service needs also suggest that systems
should be created that can adapt at run time

• On-line models can effectively guide this adaptation

• Simple models have been used in the past, but advances in
modeling technology and increased computation power suggests
that more sophisticated models, inspired by those developed by
the traditional modeling community, could be used

Stochastic Modeling Technology:
 State-of-the-Art

• Many model representation methods, BUT either limited in
representation power, or not understandable to design engineers

– Fault-Trees, Reliability Block Diagrams

– Stochastic Petri nets and variants

– Stochastic Process Algebras

• Model solution methods quite advanced

– Simulation of dependability of sophisticated systems (non-
exponential failure and repair times, complex repair policies,
complex component and SW interaction) of 5- and 6-nines possible
in reasonable time

– “Structured” representation methods make generation of many
extremely large-spaces (30+ million states) possible on standard
workstation (1 GB main memory)

– Transient and and steady-state analytic/numerical solution methods
also can handle large systems, but may be slow

Future Research Directions

• Domain-specific and domain-independent modeling languages
that are natural to system designers

• Integration with existing hardware and software design tools

• Composition and connection methods that use the structure of
models in their solution, and are exact, or that give an estimate of
the error they induce through their use (need to be able to build
models that be quickly composed and used in a variety of
circumstances)

• Model solution methods that make use of the nature of specific
performance/dependability variable specifications to reduce cost
of a solution - for analytic/numerical methods time, not space,
will be the bottleneck!

• Methods that present result in a manner that are more useful
system designers

Formalism Independent
Model Solution

Submodel Interaction via
Abstract Functional Interface

Atomic Model
DSPN, GSPN, Markov chain,
Queueing Network, SAN, SAN,
SPA, other SPN extensions,
Domain-specific formalism

Composed Model Graph interconnection
Kronecker Composition (SAN),
Replicate/Join, SPA
Domain-specific formalism

Solvable Model Rate/Impulse reward variables
Path-based reward variables
Domain-specific formalism

Connected Model

Study Specifier
(generates multiple
 models)

Fixed-point governor
Acyclic model composer

Range and Set Variation
Design-of-Experiments
Iterator

Framework Component Example Formalisms

Möbius Modeling Framework

Möbius Graphical User Interfaces

Model-based Adaptation in Dependable
Distributed Systems

• Large separation between stochastic modeling and middleware design
communities, the first being very formal, and the second being largely
experimental, stressing the importance of prototyping and and
demonstration

• Processor speeds, relative to communication times and required QoS,
make on-line solution of models possible to make adaptation decisions

• Research is needed to:

– Collect appropriate data for model input (what to collect, how to
collect, how to statistically process)

– Build appropriate models (all models are wrong, some are useful!)

– Quickly solve models

– Provide methods for multiple models present in a system to interact
with one another, providing global adaptation policy without the
overhead of centralized control or global state knowledge

An Initial Success: Replica Selection to Achieve
Soft-Realtime and Dependability Constraints

Eternal•and value

• Better approach:

 Tunable redundancy

• Spatial redundancy = N

 [Eternal, AQuA, …]

scalability

poor fault tolerance

•One-copyfault tolerance

poor scalability

Scalability

reduced fault tolerance

Fault tolerance

reduced scalability

• Spatial redundancy = 1

• Selection metrics: [lowest response time,

 nearest replica, …]

timeliness

• Tolerate unresponsiveness

 using temporal redundancy

Probabilistic Model

• M : set of replicas offering a service

• Ri : response time of replica i (a random variable)

• t : response time requested by client

• K : replica subset selected to service a client

• PK(t) : Prob (at least one replica in K responds by t)

• P (no timing failure) = PK(t)

⇒ 1- P(no replica in K responds in time t)

⇒ FRi : response time distribution function of replica i

()∏
∈

>−⇒
Ki

i tRP1

())1(1 ∏
∈

−−⇒
Ki

iR tF

Timing Fault Handler

Client

DII

AQuA

Gateway

Client Handler

Replica

Selector

Info

Repository

t0

t1

t3

t2

t4

S, W

t5

Maestro/Ensemble

LAN

Server

Server

Handler

AQuA

Gateway

 S = t4 - t3 W = t3 - t2 G = t5 –t1 – S –W Timing Failure = t5 - t0 > t

subscription

Response+
S+WG

Overhead of Replica Selection Algorithm

Variation of Redundancy Level

•More stringent the QoS specification, the higher the redundancy

Client1 QoS

 (200 ms,0)

Client2 QoS

 (x, x)

Experimental Validation of Model

Challenge Summary

• Much progress has been made in stochastic modeling theory, but
LARGE gap remains between what can be done by an expert modeler,
and can be done by typical system architect

⇒ Research is needed make modeling technology accessible to designers
by 1) integrating modeling technology with design tools, 2) creating
domain-specific modeling formalisms, 3) creating composition and
connection techniques, and 4) finding ways to present results in a
manner useful to designers

• Model-based adaptation is feasible, and has the potential to significantly
improve quality of service provided to an application

⇒ Research is need to identify and create appropriate 1) measurement
strategies, 2) models, 3) model interaction approaches, and 4) model
solution methods

