
Creating Robust Software Interfaces:
Fast + Cheap + Good

(now you can get all three)

John DeVale & Phil Koopman
devale@cmu.edu
koopman@cmu.edu

http://ballista.org

Institute
for Complex
Engineered
Systems

A Retrospective

2

Overview

Introduction

• APIs aren’t robust (and people act as if they don’t want them to be robust!)

Top 4 Reasons people give for ignoring robustness improvement

• “My API is already robust, especially for easy problems” (it’s probably not)

• “Robustness is impractical” (it is practical)

• “Robust code will be too slow” (it need not be)

• “We already know how to do it, thank you very much” (perhaps they don’t)

Conclusions

• The big future problem for “near-stationary” robustness isn’t technology --

it is awareness & training

3

Ballista Software Testing Overview

Abstracts testing to the API/Data type level
• Most test cases are exceptional
• Test cases based on best-practice SW testing methodology

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

4

Ballista: Test Generation (fine grain testing)
Tests developed per data type/subtype; scalable via composition

5

Initial Results: Most APIs Weren’t Robust
Unix & Windows systems had poor robustness scores:
• 24% to 48% of intentionally exceptional Unix tests yielded non-robust results
• Found simple “system killer” programs in Unix, Win 95/98/ME, and WinCE

Even critical systems were far from perfectly robust
• Safety critical operating systems
• DoD HLA (where their stated goal was 0% robustness failures!)

Developer reactions varied, but were often extreme
• Organizations emphasizing field reliability often wanted 100% robustness
• Organizations emphasizing development often said

“core dumps are the Right Thing”
• Some people didn’t care
• Some people sent hate mail

6

Even Those Who Cared Didn’t Get It Right
OS Vendors didn’t accomplish their stated objectives (e.g.,):
• IBM/AIX wanted few Aborts, but had 21% Aborts on POSIX tests
• FreeBSD said they would always Abort on exception (that’s the Right Thing)

but had more Silent (unreported) exceptions than AIX!
• Vendors who said their results would improve dramatically on the next

release were usually wrong

Safe Fast I/O (SFIO) library
• Ballista found that it wasn’t as safe as the authors thought

– Missed: valid file checks; modes vs. permissions; buffer size/accessibility

Do people understand what is going on?
• We found four widely held misconceptions that prevented improvement in

code robustness

7

#1: “Ballista will never find anything (important)”
1. “Robustness doesn’t matter”

• HP-UX gained a system-killer in
the upgrade from Version 9 to 10
– In newly re-written memory

management functions…
… which had a 100% failure rate
under Ballista testing

• So, robustness seems to matter!

2. “The problems you’re looking for
are too trivial -- we don’t make
those kinds of mistakes”
• HLA had a handful of functions that

were very non-robust
• SFIO even missed some “easy”

checks
• See Unix data to the right…

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OSF1 3.2

SunOS 5.5SunOS 4.1.3QNX 4.24QNX 4.22OSF1 4.0BNetBSD 1.3
LynxOS 2.4.0Linux 2.0.18IRIX 6.2IRIX 5.3HP-UX A.09.05

AIX 4.1

HP-UX B.10.20FreeBSD 2.2.5

D
ev/Class-Specific

Synchronization

C
locks &

 Tim
ers

C
 Library

Process Prim
s.

System
 D

atabs

Process Env.

Files & Dirs

I/O
 P

rim
itives

M
essaging

M
em

ory M
ng.

Scheduling

R
ob

us
tn

es
s

Fa
ilu

re
 R

at
e

8

#2: “100% robustness is impractical”
The use of a metric – in our case Ballista – allowed us to remove all
detectable robustness failures from SFIO and other API subsets
• (Our initial SFIO results weren’t entirely zero; but now they are)

Abort Failure Rate for Select Functions

14

57

52

79

36

8

58

50

6.
29

5.
99 9.

2

2 1

5.
01

2 4.
5

0 0 0 0 0 0 0 0

0

10

20

30

40

50

60

70

80

90

open write read close fileno seek sfputc sfgetc

Function

%
 A

bo
rt

 F
ai

lu
re

s

STDIO
Original SFIO
Robust SFIO

9

Can Even Be Done With “Ordinary” API
Memory & semaphore robustness improved for Linux
• Robustness hardening yielded 0% failure rate on standard POSIX calls below

Failure rates for memory/process original Linux calls
(All failure rates are 0% after hardening)

16.4

31.3

75.2 75.2

57.8

7.3

35.3

59.5
64.7

41.2

64.7

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

mem
ch

r
mem

cm
p

mem
cp

y
mem

mov
e

mem
se

t
se

m_in
it

se
m_d

es
tro

y
se

m_g
etv

alu
e

se
m_p

os
t

se
m_tr

yw
ait

se
m_w

ait

Function name

Fa
ilu

re
 R

at
e

(%
)

Mem. Manipulation Module Process Synch. Module

10

#3: “It will be too slow”
Solved via caching validity checks
• Completely software-implemented cache for checking validity

• Check validity once, remember result
– Invalidate validity check when necessary

Verification
Module

Reference

Lookup

Store

Clear
Module

Invalidate

Result
Cache Structure in Memory

11

Caching Speeds Up Validity Tests
Worst-case of tight loops doing nothing but “mem” calls is still fast
• L2 Cache misses would dilute effects of checking overhead further

Slowdown of robust memory functions with tagged malloc

0.95

1

1.05

1.1

1.15

1.2

1.25

16 32 64 128 256 512 1024 2048 4096

Buffer size (Bytes)

Sl
ow

do
w

n

memchr
memcpy
memcmp
memset
memmove

12

Future MicroArchitectures Will Help
Exception & validity check branches are highly predictable
• Compiler can structure code to assume validity/no exceptions
• Compiler can give hints to branch predictor
• Branch predictor will quickly figure out the “valid” path even with no hints
• Predicated execution can predicate on “unexceptional” case

Exception checks can execute in parallel with critical path
• Superscalar units seem able to execute checks & functions concurrently
• Out of order execution lets checks wait for idle cycles

The future brings more speculation; more concurrency
• Exception checking is an easy target for these techniques
• Robustness is cheap and getting cheaper (if done with a view to architecture)

13

#4: “We Did That On Purpose”
Variant: “Nobody could reasonably do better”
• Despite the experiences with POSIX, HLA & SFIO, this one persisted
• So, we tried an experiment in self-evaluating robustness

Three experienced commercial development teams
• Components written in Java
• Each team self-rated the robustness of their component per

Maxion’s “CHILDREN” mnemonic-based technique
• We then Ballista tested their (pre-report) components for robustness

• Metric: did the teams accurately predict where their robustness vulnerabilities
would be?

– They didn’t have to be perfectly robust
– They all felt they would understand the robustness tradeoffs they’d made

14

Self Report Results: Teams 1 and 2
They were close in their prediction
• Didn’t account for some language safety features (divide by zero)
• Forgot about, or assumed language would protect them against NULL in A4

Component A and B Robustness

0

5

10

15

20

25

A1 A2 A3 A4 B1 B2 B3 B4

Function

Ab
or

t F
ai

lu
re

 R
at

e
(%

)

Measured
Expected

15

Self Report Data: Team 3
Did not predict several failure modes
• Probably could benefit from additional training/tools

Component C Total Failure Rate

0

10

20

30

40

50

60

C1 C3 C5 C7 C9

C11
C13
C15
C17
C19F
C21F
C23F
C25F
C27F

Method Designation

To
ta

l F
ai

lu
re

 R
at

e
(%

)

Measured
Expected

16

Conclusions: Ballista Project In Perspective
General testing & wrapping approach for Ballista
• Simple tests are effective(!)

– Scalable for both testing and hardening
• Robustness tests & wrappers can be abstracted to the data type level

– Single validation fragment per type – i.e. checkSem(), checkFP()…

Wrappers are fast (under 5% penalty) and usually 100% effective
• Successful check results can be cached to exploit locality

– Typical case is an index lookup, test and jump for checking cache hit
– Typical case can execute nearly “for free” in modern hardware

• After this point, it is time to worry about resource leaks, device drivers, etc.

But, technical solution alone is not sufficient
• Case study of self-report data

– Some developers unable to predict code response to exceptions
• Training/tools needed to bridge gap

– Even seasoned developers need a QA tool to keep them honest
– Stand-alone Ballista tests for Unix under GPL; Windows XP soon

17

Future Research Challenges In The Large
Quantifying “software aging” effects
• Simple, methodical tests for resource leaks

– Single-threaded, multi-threaded, distributed all have different issues
– One problem is multi-thread contention for non-reentrant resources

» e.g., exception handling data structures without semaphore protection

• Measurement & warning systems for need for SW rejuvenation
– Much previous work in predictive models
– Can we create an on-line monitor to advise it is time to reboot?

Understanding robustness tradeoffs from developer point of view
• Tools to provide predictable tradeoff of effort vs. robustness

– QA techniques to ensure that desired goal is reached
– Ability to specify robustness level clearly, even if “perfection” is not desired

• Continued research in enabling ordinary developers to write robust code
• Need to address different needs for development vs. deployment

– Developers want heavy-weight notification of unexpected exceptions
– In the field, may want a more benign reaction to exceptions

18

