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Overview

Introduction

• APIs aren’t robust (and people act as if they don’t want them to be robust!)

Top 4 Reasons people give for ignoring robustness improvement

• “My API is already robust, especially for easy problems”   (it’s probably not)

• “Robustness is impractical”  (it is practical)

• “Robust code will be too slow” (it need not be)

• “We already know how to do it, thank you very much” (perhaps they don’t)

Conclusions

• The big future problem for “near-stationary” robustness isn’t technology --

it is awareness & training
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Ballista Software Testing Overview

Abstracts testing to the API/Data type level
• Most test cases are exceptional
• Test cases based on best-practice SW testing methodology
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Ballista: Test Generation (fine grain testing)
Tests developed per data type/subtype; scalable via composition
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Initial Results: Most APIs Weren’t Robust
Unix & Windows systems had poor robustness scores:
• 24% to 48% of intentionally exceptional Unix tests yielded non-robust results
• Found simple “system killer” programs in Unix, Win 95/98/ME, and WinCE

Even critical systems were far from perfectly robust
• Safety critical operating systems
• DoD HLA (where their stated goal was 0% robustness failures!)

Developer reactions varied, but were often extreme
• Organizations emphasizing field reliability often wanted 100% robustness
• Organizations emphasizing development often said 

“core dumps are the Right Thing”
• Some people didn’t care
• Some people sent hate mail
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Even Those Who Cared Didn’t Get It Right
OS Vendors didn’t accomplish their stated objectives  (e.g.,):
• IBM/AIX wanted few Aborts, but had 21% Aborts on POSIX tests
• FreeBSD said they would always Abort on exception (that’s the Right Thing) 

but had more Silent (unreported) exceptions than AIX!
• Vendors who said their results would improve dramatically on the next 

release were usually wrong

Safe Fast I/O  (SFIO) library
• Ballista found that it wasn’t as safe as the authors thought

– Missed: valid file checks; modes vs. permissions; buffer size/accessibility

Do people understand what is going on?
• We found four widely held misconceptions that prevented improvement in 

code robustness
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#1: “Ballista will never find anything (important)”
1. “Robustness doesn’t matter”

• HP-UX gained a system-killer in 
the upgrade from Version 9 to 10
– In newly re-written memory 

management functions…
… which had a 100% failure rate 
under Ballista testing

• So, robustness seems to matter!

2. “The problems you’re looking for 
are too trivial -- we don’t make 
those kinds of mistakes”
• HLA had a handful of functions that 

were very non-robust
• SFIO even missed some “easy” 

checks
• See Unix data to the right…
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#2: “100% robustness is impractical”
The use of a metric – in our case Ballista – allowed us to remove all 
detectable robustness failures from SFIO and other API subsets
• (Our initial SFIO results weren’t entirely zero; but now they are)
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Can Even Be Done With “Ordinary” API
Memory & semaphore robustness improved for Linux
• Robustness hardening yielded 0% failure rate on standard POSIX calls below

Failure rates for memory/process original Linux calls
(All failure rates are 0% after hardening)
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#3: “It will be too slow”
Solved via caching validity checks
• Completely software-implemented cache for checking validity

• Check validity once, remember result
– Invalidate validity check when necessary
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Caching Speeds Up Validity Tests
Worst-case of tight loops doing nothing but “mem” calls is still fast
• L2 Cache misses would dilute effects of checking overhead further

Slowdown of robust memory functions with tagged malloc
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Future MicroArchitectures Will Help
Exception & validity check branches are highly predictable
• Compiler can structure code to assume validity/no exceptions
• Compiler can give hints to branch predictor
• Branch predictor will quickly figure out the “valid” path even with no hints
• Predicated execution can predicate on “unexceptional” case

Exception checks can execute in parallel with critical path
• Superscalar units seem able to execute checks & functions concurrently
• Out of order execution lets checks wait for idle cycles

The future brings more speculation; more concurrency
• Exception checking is an easy target for these techniques
• Robustness is cheap and getting cheaper (if done with a view to architecture)
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#4: “We Did That On Purpose”
Variant: “Nobody could reasonably do better”
• Despite the experiences with POSIX, HLA & SFIO, this one persisted
• So, we tried an experiment in self-evaluating robustness

Three experienced commercial development teams
• Components written in Java
• Each team self-rated the robustness of their component per 

Maxion’s “CHILDREN” mnemonic-based technique
• We then Ballista tested their (pre-report) components for robustness

• Metric: did the teams accurately predict where their robustness vulnerabilities 
would be?

– They didn’t have to be perfectly robust
– They all felt they would understand the robustness tradeoffs they’d made



14

Self Report Results: Teams 1 and 2
They were close in their prediction
• Didn’t account for some language safety features (divide by zero)
• Forgot about, or assumed language would protect them against NULL in A4
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Self Report Data: Team 3
Did not predict several failure modes
• Probably could benefit from additional training/tools
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Conclusions: Ballista Project In Perspective
General testing & wrapping approach for Ballista
• Simple tests are effective(!)

– Scalable for both testing and hardening 
• Robustness tests & wrappers can be abstracted to the data type level

– Single validation fragment per type – i.e. checkSem(), checkFP()…

Wrappers are fast (under 5% penalty) and usually 100% effective
• Successful check results can be cached to exploit locality

– Typical case is an index lookup, test and jump for checking cache hit
– Typical case can execute nearly “for free” in modern hardware

• After this point, it is time to worry about resource leaks, device drivers, etc.

But, technical solution alone is not sufficient
• Case study of self-report data

– Some developers unable to predict code response to exceptions
• Training/tools needed to bridge gap

– Even seasoned developers need a QA tool to keep them honest
– Stand-alone Ballista tests for Unix under GPL; Windows XP soon
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Future Research Challenges In The Large
Quantifying “software aging” effects
• Simple, methodical tests for resource leaks

– Single-threaded, multi-threaded, distributed all have different issues
– One problem is multi-thread contention for non-reentrant resources

» e.g., exception handling data structures without semaphore protection

• Measurement & warning systems for need for SW rejuvenation
– Much previous work in predictive models
– Can we create an on-line monitor to advise it is time to reboot?

Understanding robustness tradeoffs from developer point of view
• Tools to provide predictable tradeoff of effort vs. robustness

– QA techniques to ensure that desired goal is reached
– Ability to specify robustness level clearly, even if “perfection” is not desired

• Continued research in enabling ordinary developers to write robust code
• Need to address different needs for development vs. deployment

– Developers want heavy-weight notification of unexpected exceptions
– In the field, may want a more benign reaction to exceptions
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