
Abstract Interpretation Based Formal Methods
and Future Challenges

Patrick Cousot

École normale supérieure, Département d’informatique,
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr http://www.di.ens.fr/˜cousot/

Abstract. In order to contribute to the solution of the software reliabil
ity problem, tools have been designed to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The purpose of abstract interpre
tation is to formalize this idea of approximation. We illustrate informally
the application of abstraction to the semantics of programming languages
as well as to static program analysis. The main point is that in order to
reason or compute about a complex system, some information must be
lost, that is the observation of executions must be either partial or at a
high level of abstraction.
A few challenges for static program analysis by abstract interpretation
are finally briefly discussed.
The electronic version of this paper includes a comparison with other
formal methods: typing , model-checking and deductive methods.

1 Introductory Motivations

The evolution of hardware by a factor of 106 over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. Such big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow in similar
proportions. At a not so uncommon (and often optimistic) rate of one bug per
thousand lines such huge programs might rapidly become hardly manageable in
particular for safety critical systems. Therefore in the next 10 years, the software
reliability problem is likely to become a major concern and challenge to modern
highly computer-dependent societies.

In the past decade a lot of progress has been made both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mechanical tools (using the computer) to help the pro
grammer to reason about programs.

Mechanical tools for computer aided program verification started by execut
ing or simulating the program in as much as possible environments. However

arlat
Reference:Patrick Cousot. Abstract Interpretation Based Formal Methods and Future Challenges. In Informatics, 10 Years Back - 10 Years Ahead, R. Wilhelm (Ed.), Lecture Notes in Computer Science 2000, pp. 138-156, 2001.(See also: http://www.di.ens.fr/~cousot/COUSOTpapers/SSGRRP-00-PC.shtml).

http://www.di.ens.fr/~cousot/COUSOTpapers/SSGRRP-00-PC.shtml

132 Patrick Cousot

debugging of compiled code or simulation of a model of the source program
hardly scale up and often offer a low coverage of dynamic program behavior.

Formal program verification methods attempt to mechanically prove that
program execution is correct in all specified environments. This includes deduc
tive methods, model checking, program typing and static program analysis.

Since program verification is undecidable, computer aided program verifica
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approximation. This means that the me
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The purpose of
abstract interpretation is to formalize this notion of approximation in a unified
framework [10 , 17].

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory, including inductive definitions [24]. A
more restricted understanding of abstract interpretation is to view it as a theory
of approximation of the behavior of dynamic discrete systems (e.g. the formal
semantics of programs or a communication protocol specification). Since such
behaviors can be characterized by fixpoints (e.g. corresponding to iteration),
an essential part of the theory provides constructive and effective methods for
fixpoint approximation and checking by abstraction [19 , 23].

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantics of a program can be defined as the
solution of a fixpoint equation. Then, in order to compare semantics, we will
show that all the semantics of a program can be organized in a hierarchy by ab
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
[15].

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most pre

Abstract Interpretation Based Formal Methods and Future Challenges 133

cise of the semantics that
we will consider, is that of
a trace semantics [15 , 19].
An execution of a program
for a given specific interac
tion with its environment
is a sequence of states, ob
served at discrete intervals
of time, starting from an ini
tial state, then moving from
one state to the next state
by executing an atomic pro

�xxx

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c d

e f

g h

i j

k

Fig. 1. Examples of Computation Traces

gram step or transition and either ending in a final regular or erroneous state
or non terminating, in which case the trace is infinite (see Fig. 1).

2.3 Least Fixpoint Trace Semantics

Introducing the computational partial ordering [15], we define the trace semantics
in fixpoint form [15], as the least solution of an equation of the form X = F(X)
where X ranges over sets of finite and infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors+ the subset of finite
traces and by Behaviors∞ the subset of infinite traces.

A finite trace a•−−−. . .−−−z• in Behaviors+ is either reduced to a final state
(in which case there is no possible transition from state a• = z•) or the initial state
a• is not final and the trace consists of a first computation step a•−−−b• after which,
from the intermediate state b• , the execution goes on with the shorter finite trace
b•−−−. . .−−−z• ending in the final state z•. The finite traces are therefore all well
defined by induction on their length.

An infinite trace a•−−−. . .−−−. . . in Behaviors∞ starts with a first computa
tion step a•−−−b• after which, from the intermediate state b• , the execution goes
on with an infinite trace b•−−−. . .−−−. . . starting from the intermediate state
b•. These remarks and Behaviors = Behaviors+ ∪ Behaviors∞ lead to the
following fixpoint equation:

Behaviors = {a• | a• is a final state}
∪ {a•−−−b•−−−. . .−−−z• | a•−−−b• is an elementary step &

b•−−−. . .−−−z• ∈ Behaviors+}
∪ {a•−−−b•−−−. . .−−−. . . | a•−−−b• is an elementary step &

b•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. For example if there is only one
non-final state a• and only possible elementary step a•−−−a• then the equation is

134 Patrick Cousot

Behaviors = {a•−−−a•−−−. . .−−−. . . | a•−−−. . .−−−. . . ∈ Behaviors}. One solution
is {a•−−−a•−−−a•−−−a•−−−. . .−−−. . .} but another one is the empty set ∅. Therefore,
we choose the least solution for the computational partial ordering [15]:

« More finite traces & less infinite traces » .

2.4 Abstractions & Abstract Domains

A programming language semantics is more or less precise according to the
considered observation level of program execution. This intuitive idea can be
formalized by Abstract interpretation [15] and applied to different languages ,
including for proof methods.

The theory of abstract interpretation formalizes this notion of approximation
and abstraction in a mathematical setting which is independent of particular
applications. In particular, abstractions must be provided for all mathemati
cal constructions used in semantic definitions of programming and specification
languages [19 , 23].

An abstract domain is an abstraction of the concrete semantics in the form
of abstract properties (approximating the concrete properties Behaviors) and
abstract operations (including abstractions of the concrete approximation and
computational partial orderings, an approximation of the concrete fixpoint trans
former F , etc.). Abstract domains for complex approximations of designed by
composing abstract domains for simpler components [19], see Sec. 2.10.

If the approximation is coarse enough, the abstraction of a concrete seman
tics can lead to an abstract semantics which is less precise, but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them [16]. Abstract interpretation algorithms provide ap
proximate methods for computing this abstract semantics. The most important
algorithms in abstract interpretation are those providing effective methods for
the exact or approximate iterative resolution of fixpoint equations [17].

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other ar
eas of computer science such as artificial intelligence e.g. for intelligent planning,
proof checking, automated deduction, theorem proving, etc.

2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from [15], where Behaviors , denoted τ �∞ for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in [19]). The
approximation partial ordering of this lattice formally corresponds to logical im
plication, intuitively to the idea that one semantics is more precise than another
one.

Abstract Interpretation Based Formal Methods and Future Challenges 135

Hoare
logics

weakest
precondition
semantics

denotational
semantics

relational
semantics

trace
semantics

transition
semantics

equivalence
abstraction✲

restriction

infinite
demoniac

deterministic
naturalangelic

τ�!

τ∂

τEM

τD

τ�τS τ♦τ �τ �

τ�

τwp

τ tHτpH

τwlp

τ
�+

τ+ τω

τ �ω

τ gH

τ gwp

τ�?

τ �

τ∞

τ �∞

τ

✟✟✯
�

✘✘✘✘✘✘✘✿ �

�

�

✡
✡✡✣

�

� � �

�

✻

✻ ✻
✏✏✶

�

�

�

�✟✟✟✟✯

✟✟✟✟✯

✟✟✟✟✯

❍❍❍❍

❍❍❍❍

❍❍❍❍

❍❍❍❍

�❍❍❍❍
�

�

�

�

�

��

�

�

�

�

✏✏✏✏✏✏

✏✏✏✏✏✏✶

✏✏✏✏✶

Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (denoted τ∞ in Fig.
2) from a trace semantics (denoted τ �∞ in Fig. 2). The abstraction αr from trace
to relational semantics consists in replacing the finite traces a•−−−. . .−−−z• by the
pair 〈a, z〉 of the initial and final states. The infinite traces a•−−−b•−−−. . .−−−. . .
are replaced by the pair 〈a, ⊥〉 where the symbol ⊥ denotes non-termination.
Therefore the abstraction is:

αr(X) = {〈a, z〉 | a•−−−. . .−−−z• ∈ X} ∪ {〈a, ⊥〉 | a•−−−b•−−−. . .−−−. . . ∈ X} .

The denotational semantics (denoted τ � in Fig. 2) is the isomorphic representa
tion of a relation by its right-image:

αd(R) = λ a · {x | 〈a, x〉 ∈ R}.

The abstraction from relational to big-step operational or natural seman
tics (denoted τ+ in Fig. 2) simply consists in forgetting everything about non-
termination, so αn(R) = {〈a, x〉 ∈ R | x = ⊥} , as illustrated in Fig. 3.

A non comparable abstraction consists in collecting the set of initial and final
states as well as all transitions 〈x,y〉 appearing along some finite or infinite trace
a•−−−. . .

x•−−−
y
• . . . of the trace semantics. One gets the small-step operational or

transition semantics (denoted τ in Fig. 2 and also called Kripke structure in
modal logic) as illustrated in Fig. 4.

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics or the static/collecting semantics for proving invariance properties of
programs.

136 Patrick Cousot

�
x
x
x
§
x

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c d

e f

g h

i j

k

a d

e f

g h

i j

k

⊥
⊥

a d

e f

g h

i j

α α

Initial states
Final states

r n

Trace
semantics

Relational
semantics

Natural
semantics

Fig. 3. Abstraction from Trace to Relational and Natural Semantics

Transitions

Initial states Final states

a b c d

e f

g h

i j

k

a

e

g

i

k

d

f

h

j

b

Fig. 4. Transition Semantics

All abstractions considered in this paper are “from above” so that the ab
stract semantics describes a superset or logical consequence of the concrete
semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An example of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu
tion trace prefix fulfilling some given specification. In order to avoid repeating
two times dual concepts and as we do usually, we only consider approximations
“from above”, knowing that approximations “from below” can be easily derived
by applying the duality principle (as found e.g. in lattice theory).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
static/collecting semantics (Fig. 5). A further abstraction consists in forgetting
in a state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points (pairs of values), as illustrated in the
plane by Fig. 6(a).

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.

Abstract Interpretation Based Formal Methods and Future Challenges 137

�
x
x
x
§
x

Reachable states

Initial states Final states

a

e

g

i

k

d

f

h

j

a b c d

e f

g h

i j

k

Fig. 5. Static / Collecting / Partial Correctness Semantics

x

y {. . . , 〈5, 7〉, . . . ,
〈13, 21〉, . . .}

(a) [In]finite Set of Points

x

y
{

x ≥ 0
y ≥ 0

(b) Sign Abstraction

x

y {
x ∈ [3, 27]
y ∈ [4, 32]

(c) Interval Abstraction

x

y {
x = 5 mod 8
y = 7 mod 9

(d) Simple Congruence Ab
straction

Fig. 6. Non-relational Abstractions

Non-relational Abstractions The non-relational, attribute independent or
cartesian abstractions [19, example 6.2.0.2] consists in ignoring the possible re
lationships between the values of the X and Y variables. So a set of pairs is
approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction [19] illustrated in Fig. 6(b) consists in replacing integers
by their sign thus ignoring their absolute value. The interval abstraction [16]
illustrated in Fig. 6(c) is more precise since it approximates a set of integers by
it minimal and maximal values (including −∞ and +∞ as well as the empty
set if necessary).

The congruence abstraction [37] (generalizing the parity abstraction [19]) is
not comparable, as illustrated in Fig. 6(d).

138 Patrick Cousot

�
x
x
x
§
x

x

y

3 ≤ x ≤ 7
x + y ≤ 8
4 ≤ y ≤ 5
x − y ≤ 9

(a) Octagonal Abstraction

x

y
{

7x + 3y ≤ 5
2x + 7y ≥ 0

(b) Polyhedral Abstraction

x

y
{

3x + 5y = 8 mod 7
2x − 9y = 3 mod 5

(c) Relational Congruence Abstrac
tion

x

y
{

3x + 7y ∈ [2, 7] mod 8
2x − 5y ∈ [0, 9] mod 4

(d) Trapezoidal Congruence Abstrac
tion

Fig. 7. Relational Abstractions

Relational Abstractions Relational abstractions are more precise than non
relational ones in that some of the relationships between values of the program
states are preserved by the abstraction.

For example the polyhedral abstraction [29] illustrated in Fig. 7(b) approxi
mates a set of integers by its convex hull. Only non-linear relationships between
the values of the program variables are forgotten.

The use of an octagonal abstraction illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with coefficients +1 or -1 (of
the form ±x ± y ≤ c where c is an integer constant).

A non comparable relational abstraction is the linear congruence abstraction
[38] illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con
gruence abstraction [47] as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym
bolic structures such as control structures (call graphs), data structures (search
trees, pointers [32, 33 , 53 , 58]), communication structures (distributed & mobile
programs [35 , 40 , 57]), etc. It is very difficult to find compact and expressive
abstractions of such sets of objects (sets of languages, sets of automata, sets of
trees or graphs, etc.). For example Büchi automata or automata on trees are
very expressive but algorithmically expensive.

Abstract Interpretation Based Formal Methods and Future Challenges 139

�
x
x
x
§
x

x

y

(a) yes

x

y

(b) unkown

x

y

(c) yes

Fig. 8. Is 1/(X+1-Y) well-defined?

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by [48] using Binary Decision Graphs and Tree Schemata to
abstract infinite sets of infinite trees.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu
tion are removed.

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example, if termination is proved using the relational
semantics then there is no execution abstracted to 〈a,⊥〉 , so there is no infinite
trace a•−−−b•−−−. . .−−−. . . in the trace semantics, whence non termination is
impossible when starting execution in initial state a.

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example, the natural semantics can
not answer questions about termination as can be done with the relational or
denotational semantics. These semantics cannot answer questions about con
crete computation costs.

The more concrete is the semantics, the more questions it can answer. The
more abstract semantics are simpler. Non comparable abstract semantics (such
as intervals and congruences) answer non comparable sets of questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/(X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line x + 1 − y = 0, as shown in Fig. 8(a).

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as is illustrated in Fig. 8(b).

However the answer is positive when using the relational congruence abstrac
tion, as shown in Fig. 8(c).

140 Patrick Cousot

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos
ing abstractions of simpler mathematical structures.

For example knowing abstractions of the
parameter and result of a monotonic function
on sets, a function F can be abstracted into
an abstract function F � as illustrated in Fig.
9 [19]. Mathematically, F � takes its parame
ter x in the abstract domain. Let γ(x) be the
corresponding concrete set (γ is the adjoined,
intuitively the inverse of the abstraction func
tion α). The function F can be applied to get
the concrete result ◦ F ◦ γ(x). The abstraction
function α can then be applied to approximate
the result F �(x) = α ◦ F ◦ γ(x).
In general, neither F , α nor γ are computable
even though the abstraction α may be effective.

�xxx F

F

Concrete domain

Abstract domain
�

α

F � = α ◦ F ◦ γ

Fig. 9. Function Abstraction

So we have got a formal specification of the abstract function F � and an algo
rithm has to be found for an effective implementation.

2.9 Fixpoint Abstraction

A fixpoint of a function F can often be obtained as the limit of the iterations of
F from a given initial value ⊥. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F � of
F starting from the abstraction α(⊥) of the initial value ⊥. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction [19].
This is illustrated in Fig. 10.

Often states have some finite component (e.g. a program counter) which can
be used to partition into fixpoint system of equations by projection along that
component. Then chaotic [18] and asynchronous iteration strategies [10] can be
used to solve the equations iteratively. Various efficient iteration strategies have
been studied , including ones taking particular properties of abstractions into
account and others to speed up the convergence of the iterates [26].

2.10 Composing Abstractions

Abstractions hence abstract interpreters for static program analysis can be de
signed compositionally by stepwise abstraction, combination or refinement [36 ,
13].

An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function

Abstract Interpretation Based Formal Methods and Future Challenges 141

�
x
x
x
§
§

F

F
�

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
� F

� F
�

F
�

F
F

α α α α Approximation
relation �

⊥

⊥�

Fig. 10. Fixpoint Abstraction lfp F � γ(lfp F �)

parameters and the function result which can be chosen later in the modular
design of the abstract interpreter.

An example of abstraction combination is the reduced product of two abstrac
tions [19] which is the most abstract abstraction more precise than these two
abstractions or the reduce cardinal power [19] generalizing case analysis. Such
combination of abstract domains can be implemented as parameterized modules
in static analyzer generators (e.g. [45]) so as to partially automate the design of
expressive analyses from simpler ones.

An example of refinement is the disjunctive completion [19] which completes
an abstract domain by adding concrete disjunctions missing in the abstract
domain. Another example of abstract domain refinement is the complementation
[8] adding concrete negations missing in the abstract domain.

2.11 Sound and Complete Abstractions

Abstract interpretation theory has mainly been concerned with the soundness of
the abstract semantics/interpreter, relative to which questions can be answered
correctly despite the loss of information [17]. Soundness is essential in practice
and leads to a formal design method [19].

However completeness , relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been
intensively studied [19 , 36], including in the context of model checking [14].

In practice complete abstractions, including a most abstract one, always
exist to check that a given program semantics satisfies a given specification.
Moreover any given abstraction can be refined to a complete one. Nevertheless
this approach has severe practical limitations since, in general, the design of
such complete abstractions or the refinement of a given one is logically equiva
lent to the design of an inductive argument for the formal proof that the given
program satisfies the given specification, while the soundness proof of this ab
straction logically amounts to checking the inductive verification conditions or

142 Patrick Cousot

proof obligations of this formal proof [14]. Such proofs can hardly be fully auto
mated hence human interaction is unavoidable. Moreover the whole process has
to be repeated each time the program or specification is modified.

Instead of considering such strong specifications for a given specific program,
the objective of static program analysis is to consider (often predefined) spec
ifications and all possible programs. The practical problem in static program
analysis is therefore to design useful abstractions which are computable for all
programs and expressive enough to yield interesting information for most pro
grams.

3 Static Program Analysis

Static program analysis is the automatic static determination of dynamic run-
time properties of programs.

3.1 Foundational Ideas of Static Program Analysis

Given a program and a specification, a pro
gram analyzer will check if the program seman
tics satisfies the specification (Fig. 11). In case
of failure, the analyzer will provide hints to un
derstand the origin of errors (e.g. by a backward
analysis providing necessary conditions to be sat
isfied by counter-examples).

The principle of the analysis is to compute an
approximate semantics of the program in order

�xxx
Program analyzer

Program Specification

Diagnosis

Fig. 11. Program Analysis
to check a given specification. Abstract interpretation is used to derive, from a
standard semantics, the approximate and computable abstract semantics. The
derivation can often be done by composing standard abstractions to fit a partic
ular kind of information which has to be discovered about program execution.
This derivation is itself not (fully) mechanizable but static analyzer generators
such as PAG [46] and others can provide generic abstractions to be composed
with problem specific ones.

In practice, the program analyzer contains a generator reading the pro
gram text and producing equations or constraints whose solution is a com
puter representation of the program abstract semantics. A solver is then used
to solve these abstract equations/constraints. A popular resolution method is
to use iteration. Of the numerical abstractions considered in Sec. 2.6 , only
the sign and simple congruence abstractions ensure the finite convergence of
the iterates. If the limit of the iterates is inexistent (which may be the case
e.g. for the polyhedral abstraction) or it is reached after infinitely many it
eration steps (e.g. interval and octagonal abstractions), the convergence may
have to be ensured and/or accelerated using a widening to over estimate the
solution in finitely many steps followed by a narrowing to improve it [10 , 17 ,
26].

Abstract Interpretation Based Formal Methods and Future Challenges 143

In abstract compilation, the gen
erator and solver are directly com
piled into a program which directly
yields the approximate solution.

This solution is an approxima
tion of the abstract semantics which
is then used by a diagnoser to check
the specification. Because of the loss
of information, the diagnosis is al
ways of the form “yes”, “no”, “un
known” or “irrelevant” (e.g. a safety
specification for unreachable code).
The general structure of program an
alyzers is illustrated in Fig. 12. Be

�xxx (Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints

Fig. 12. Principle of Program Analysis

sides diagnosis, static program analysis is also used for other applications in
which case the diagnoser is replaced by an optimiser (for compile-time opti
mization), a program transformer (for partial evaluation [43]), etc.

3.2 Shortcomings of Static Program Analysis

Static program analysis can be used for large programs (e.g. 220,000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are reusable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract specifi
cations and properties are often simple, mainly concerning elementary safety
properties such as absence of run-time errors. For example non-linear abstrac
tions of sets of points are very difficult and very few mathematical results are of
practical interest and directly applicable to program analysis. Checking termi
nation and similar liveness properties is trivial with finite state systems, at least
from a theoretical if not algorithmic point of view (e.g. finding loops in finite
graphs). The same problem is much more difficult for infinite state systems be
cause of fairness [48] or of potentially infinite data structures (as considered e.g.
in partial evaluation) which do not amount to finite cycles so that termination
or inevitability proofs require the discovery of variant functions on well-founded
sets which is very difficult in full generality.

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
of this semantics, hence the design of the analyzer is mostly manual (and beyond
the ability of casual programmers or theorem provers) whence costly. The con
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.

144 Patrick Cousot

From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handled with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Static Program Analysis

Among the numerous applications of static program analysis, let us cite data
flow analysis [52 , 28]; program optimization and transformation (including par
tial evaluation and program specialization [43] and data dependence analysis
for the parallelisation of sequential languages); set-based analysis [27]; type in
ference [12] (including undecidable systems and soft typing); verification of re
active [39 , 42], real-time and (linear) hybrid systems including state space re
duction; cryptographic protocol analysis; abstract model-checking of infinite sys
tems [28]; abstract debugging, testing and verification ; cache and pipeline be
havior prediction [34]; probabilistic analysis [49]; communication topology analy
sis for mobile/distributed code [35 , 40 , 57]; automatic differentiation of numer
ical programs; abstract simulation of temporal specifications; Semantic tattoo
ing/watermarking of software [54]; etc.

Static program analysis has been intensively studied for a variety of pro
gramming languages including procedural languages (e.g. for alias and pointer
analysis [32, 33 , 53 , 58]), functional languages (e.g. for binding time [56], strict
ness [4 , 50] and comportment analysis [25], exception analysis [59]), parallel
functional languages, data parallel languages, logic languages including Prolog
[1 , 22 , 31] (e.g. for groundness [9], sharing [7], freeness [5] and their combina
tions [6], parallelizatiion [3], etc.), database programming languages, concurrent
logic languages, functional logic languages, constraint logic languages, concur
rent constraint logic languages, specification languages, synchronous languages,
procedural/functional concurrent/parallel languages [21], communicating and
distributed languages [20] and more recently object-oriented languages [2 , 55].

Abstract interpretation based static program analyses have been used for the
static analysis of the embedded ADA software of the Ariane 5 launcher1 and
the ARD2 [44]. The static program analyser aims at the automatic detection of
the definiteness , potentiality , impossibility or inaccessibility of run-time errors
such as scalar and floating-point overflows, array index errors, divisions by zero
and related arithmetic exceptions, uninitialized variables, data races on shared
data structures, etc. The analyzer was able to automatically discover the Ariane
501 flight error. The static analysis of embedded safety critical software (such
as avionic software [51]) is very promising [30].

1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000
lines of Ada code).

2 Atmospheric Reentry Demonstrator.

Abstract Interpretation Based Formal Methods and Future Challenges 145

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software [44 , 51] is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH (www.
absint.com) created in Germany by R. Wilhelm and C. Ferdinand in 1998 com
mercializing the program analyzer generator PAG and an application to de
termine the worst-case execution time for modern computer architectures with
memory caches, pipelines, etc [34].

Polyspace Technologies (www.polyspace.com) was created in France by A.
Deutsch and D. Pilaud in 1999 to develop and commercialize ADA and C pro
gram analyzers.

Other companies like Connected Components Corporation (www.concmp.com)
created in the U.S.A. by W.L. Harrison in 1993 use abstract interpretation
internally e.g. for compiler design [41].

4 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsibility imposed by a computer-dependent society, in particular
for safety critical systems. Consequently, Software reliability3 will be a grand
challenge for computer science and practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel
oped e.g. to handle floating point numbers, data dependences (e.g. for paralleliza
tion), liveness properties with fairness (to extend finite-state model-checking to
software), timing properties for embedded software, probabilistic properties, etc.
Present-day tools will have to be enhanced to handle higher-order compositional
modular analyses and to cope with new programming paradigms involving com
plex data and control concepts (such as objects, concurrent threads, distrib
uted/mobile programming, etc.), to automatically combine and locally refine
abstractions in particular to cope with “unknow” answers, to interact nicely
with users and other formal or informal methods.

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process, from the initial
specifications to the ultimate program development.

Acknowledgements I thank Radhia Cousot and Reinhard Wilhelm for their
comments on a preliminary version of this paper. This work was supported by
the daedalus [30] and tuamotu [54] projects.

3 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).

146 Patrick Cousot

References

1. R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for semantics-based
bottom-up abstract interpretation of logic programs. TOPLAS , 15(1):133–181,
1993.

2. B. Blanchet. Escape analysis for object-oriented languages: Application to Java.
OOPSLA ’99. SIGPLAN Not. 34(10):20–34 , 1999.

3. F. Bueno, M.J. García de la Banda, and M.V. Hermenegildo. Effectiveness of
abstract interpretation in automatic parallelization: A case study in logic program
ming. TOPLAS , 21(2):189–239, 1999.

4. G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of higher-order
functions. Sci. Comput. Programming , 7:249–278, 1986.

5. M. Codish, D. Dams, G. Filè , and M. Bruynooghe. Freeness analysis for logic
programs – and correctness? Proc. ICLP ’93 , pp. 116–131. MIT Press, 1993.

6. M. Codish, H. Søndergaard, and P.J. Stuckey. Sharing and groundness dependen
cies in logic programs. TOPLAS , 21(5):948–976, 1999.

7. A. Cortesi and G. Filé. Sharing is optimal. J. Logic Programming , 38(3):371–386,
1999.

8. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen
tation in abstract interpretation. TOPLAS , 19(1):7–47, 1997.

9. A. Cortesi, G. Filé , and W.H. Winsborough. Optimal groundness analysis using
propositional logic. J. Logic Programming , 27(2):137–167, 1996.

10. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Univ. of Grenoble, 1978.

11. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. ENTCS , 6, 1997. http://www.elsevier.nl/locate/
entcs/volume6.html , 25 pages.

12. P. Cousot. Types as abstract interpretations. 24th POPL , pp. 316–331. ACM
Press, 1997.

13. P. Cousot. The calculational design of a generic abstract interpreter. In M.
Broy and R. Steinbrüggen, editors, Calculational System Design, volume 173, pp.
421–505. NATO Science Series, Series F: Computer and Systems Sciences. IOS
Press, 1999.

14. P. Cousot. Partial completeness of abstract fixpoint checking. SARA ’2000 , LNAI
1864, pp. 1–25. Springer-Verlag, 2000.

15. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoret. Comput. Sci. , To appear (Preliminary version
in [11]).

16. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
2nd Int. Symp. on Programming , pp. 106–130. Dunod, 1976.

17. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. 4th POPL , pp.
238–252. ACM Press, 1977.

18. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
mathematical foundations. Symp. on Artificial Intelligence & Programming Lan
guages, SIGPLAN Not. 12(8):1–12, 1977.

19. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. 6th

POPL , pp. 269–282. ACM Press, 1979.

Abstract Interpretation Based Formal Methods and Future Challenges 147

20. P. Cousot and R. Cousot. Semantic analysis of communicating sequential processes.
7th ICALP , LNCS 85, pp. 119–133. Springer-Verlag, 1980.

21. P. Cousot and R. Cousot. Invariance proof methods and analysis techniques for
parallel programs. In A.W. Biermann, G. Guiho, and Y. Kodratoff, editors, Auto
matic Program Construction Techniques, ch. 12, pp. 243–271. Macmillan, 1984.

22. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro
grams4. J. Logic Programming, 13(2–3):103–179, 1992.

23. P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp. ,
2(4):511–547, Aug. 1992.

24. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre
tation. 19th POPL , pp. 83–94. ACM Press, 1992.

25. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and PER
analysis of functional languages). Proc. 1994 ICCL , pp. 95–112. IEEE Comp. Soc.
Press, 1994.

26. P. Cousot and R. Cousot. Comparing the Galois connection and widen
ing/narrowing approaches to abstract interpretation. Proc. 4th PLILP ’92 , LNCS
631, pp. 269–295. Springer-Verlag, 1992.

27. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. 7th FPCA , pp. 170–181. ACM Press,
1995.

28. P. Cousot and R. Cousot. Temporal abstract interpretation. 27th POPL , pp.
12–25. ACM Press, 2000.

29. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. 5th POPL , pp. 84–97. ACM Press, 1978.

30. DAEDALUS: Validation of critical software by static analysis and abstract testing.
P. Cousot, R. Cousot, A. Deutsch, C. Ferdinand, É. Goubault, N. Jones, D. Pilaud,
F. Randimbivololona, M. Sagiv, H. Seidel, and R. Wilhelm. Project IST-1999-20527
of the european 5th Framework Programme, Oct. 2000 – Oct. 2002.

31. S.K. Debray. Formal bases for dataflow analysis of logic programs. In G. Levi,
editor, Advances in Logic Programming Theory , Int. Sec. 3, pp. 115–182. Clarendon
Press, 1994.

32. A. Deutsch. Semantic models and abstract interpretation techniques for inductive
data structures and pointers. Proc. PEPM ’95 , pp. 226–229. ACM Press, 1995.

33. N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. Proc.
SAS ’2000 , LNCS 1824, pp. 115–134. Springer-Verlag, 2000.

34. C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior prediction by
abstract interpretation. Sci. Comput. Programming , 35(1):163–189, 1999.

35. J. Feret. Confidentiality analysis of mobile systems. Proc. SAS ’2000 , LNCS 1824,
pp. 135–154. Springer-Verlag, 2000.

36. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com
plete. J. ACM , 47(2):361–416, 2000.

37. P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math. ,
30:165–190, 1989.

38. P. Granger. Static analysis of linear congruence equalities among variables of a
program. 493, pp. 169–192. Springer-Verlag, 1991.

39. N. Halbwachs. About synchronous programming and abstract interpretation. Sci.
Comput. Programming , 31(1):75–89, 1998.

4 The editor of J. Logic Programming has mistakenly published the unreadable galley
proof. For a correct version of this paper, see http://www.di.ens.fr/˜cousot.

148 Patrick Cousot

40. R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstract interpretation
of mobile ambients. Proc. SAS ’99 , LNCS 1694, pp. 134–138. Springer-Verlag,
1999.

41. W.L. Harrison. Can abstract interpretation become a main stream compiler tech
nology? (abstract). Proc. SAS ’97 , LNCS 1302, p. 395. Springer-Verlag, 1997.

42. T.A. Henzinger, R. Majumbar, F. Mang, and J.-F. Raskin. Abstract interpretation
of game properties. Proc. SAS ’2000 , LNCS 1824, pp. 220–239. Springer-Verlag,
2000.

43. N.D. Jones. Combining abstract interpretation and partial evaluation (brief
overview). Proc. SAS ’97 , LNCS 1302, pp. 396–405. Springer-Verlag, 1997.

44. P. Lacan, J.N. Monfort, L.V.Q. Ribal, A. Deutsch, and G. Gonthier. The software
reliability verification process: The Ariane 5 example. DASIA ’98 – DAta Systems
In Aerospace , ESA Publications, 1998.

45. B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic
abstract interpretation algorithm for Prolog. Proc. ICCL 92 , pp. 137–146. IEEE
Comp. Soc. Press, 1992.

46. F. Martin. Generating Program Analyzers. Pirrot Verlag, Saarbrücken, 1999.
47. F. Masdupuy. Semantic analysis of interval congruences. FMPA , LNCS 735, pp.

142–155. Springer-Verlag, 1993.
48. L. Mauborgne. Tree schemata and fair termination. Proc. SAS ’2000 , LNCS 1824,

pp. 302–321. Springer-Verlag, 2000.
49. D. Monniaux. Abstract interpretation of probabilistic semantics. Proc. SAS ’2000 ,

LNCS 1824, pp. 322–339. Springer-Verlag, 2000.
50. A. Mycroft. Abstract Interpretation and Optimising Transformations for Applica

tive Programs. Ph.D. Dissertation, CST-15-81, Univ. of Edinburgh, 1981.
51. F. Randimbivololona, J. Souyris, and A. Deutsch. Improving avionics software ver

ification cost-effectiveness: Abstract interpretation based technology contribution.
DASIA ’2000 – DAta Systems In Aerospace , ESA Publications, 2000.

52. D.A. Schmidt and B. Steffen. Program analysis as model checking of abstract
interpretations. Proc. SAS ’98 , LNCS 1503, pp. 351–380. Springer-Verlag, 1998.

53. J. Stransky. A lattice for abstract interpretation of dynamic (lisp-like) structures.
Inform. and Comput. , 101(1):70–102, 1992.

54. TUAMOTU: Tatouage électronique sémantique de code mobile Java. P. Cousot,
R. Cousot, and M. Riguidel. Project RNRT 1999 n◦ 95, Oct. 1999 – Oct. 2001.

55. R. Vallée-Rai, H. Hendren, P. Lam, É Gagnon, and P. Co. Soot - a Javatm opti
mization framework. Proc. CASCON ’99 , 1999.

56. F. Védrine. Binding-time analysis and strictness analysis by abstract interpreta
tion. Proc. SAS ’95 , LNCS 983, pp. 400–417. Springer-Verlag, 1995.

57. A. Venet. Automatic determination of communication topologies in mobile sys
tems. Proc. SAS ’98 , LNCS 1503, pp. 152–167. Springer-Verlag, 1998.

58. A. Venet. Automatic analysis of pointer aliasing for untyped programs. Sci. Com
put. Programming, 35(1):223–248, 1999.

59. Kwangkeun Yi. An abstract interpretation for estimating uncaught exceptions in
standard ML programs. Sci. Comput. Programming , 31(1):147–173, 1998.

The electronic version of this paper includes additional material on static pro
gram analysis applications as well as a comparison with other formal methods (typing,
model-checking and deductive methods) which, for lack of space, could not be included
in this published version. A broader bibliography is available in its extended version.�xxx

