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Model-Based System Validation

« Goal: Determine, early in the design phase, the performance,
dependability, and performability of large-scale distributed systems.

« Experience:

— Building high-level CAD tools for such evaluation since 1984
METASAN, UltraSAN, and Mobius

— UltraSAN modeling software licensed to approximately 250
academic sites.

— UltraSAN commercially licensed to several companies, including
Intel, Bell Communications Research, US West Advanced

Technologies, IBM, Motorola, Vysis, 3M, NASA, Bell Northern
Research, and Technicatome

— Current research directed toward efficiently solving models of very
large systems, using scalable ways to compose and connect
models together (Mobius Project).




Integrated Modeling Frameworks are Needed!

No single formalism is best for representing all parts of a distributed
computing/communication system

— Computer hardware, networks, protocols, and applications each
call for a different representation

— Even within a “class” of application, different industry segments
use very different ways of representing a particular design

No single solution method is adequate to solve all models

— Discrete-event simulation is efficient in many cases, but is
extremely slow in others (e.g., significant, but rare events (like
faults and buffer overflows), or extreme system complexity)

Research in new modeling methods and tools is significantly
hampered by the close link between model specification and model
solution methods, and the closed nature of existing tools
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Related Work

« Single formalism, multiple solution methods

— e.g., DyQN-Tool*, GreatSPN, UltraSAN, TANGRAM-I|
* Integrated software environment

— ISME, IDEAS, Freud
* Multi-formalism multi-solution

— SHARPE, SMART




Mabius Project Research Goal

Development of tools to predict the performance, dependability, and
performability of distributed computing/communication systems

— Such systems are complex combinations of:
« Computing hardware
* Networks
» Operating systems
« Software

(First goal was not to prove logical system properties, although this
may be possible within framework (and what | would like to learn more
about at this workshop!))

We believe such tools can be realized by:

— Developing a framework/tool that supports multiple modeling
formalisms, at multiple levels of detail and abstraction, and multiple
model solution methods

— Developing new model representation and solution methods
(within the framework, and implemented in the tool) that scale well
with increasing system complexity




Mobius Framework

Model Formalism Solver

Model Formalism — Mobius — > Solver

/ Framework \

Model Formalism Solver

Model: An abstract representation of some system
Formalism: A modeling language

Framework: A “language” in which modeling languages may be
expressed




The Maobius Framework ...

Expresses most existing modeling languages (except some simulation
languages)

Retains the ability for efficient solution

Facilitates homogeneous modeling

Is a vehicle for researching new model composition, connection,
reward specification, and solution methods




Model Categories in the Mébius Framework

Framework Component

Submodel Interaction

Atomic Model

Composed Model

Solvable Model

Connected Model

Study Specifier
(generates multiple
models)

Model Specification

Example Formalisms

DSPN, GSPN, Markov chain,
Queueing Network, SAN, SAN,
SPA, other SPN extensions,
Domain-specific formalism

Graph interconnection
Kronecker Composition (SAN),
Replicate/Join, SPA
Domain-specific formalism

Rate/Impulse reward variables
Path-based reward variables
Domain-specific formalism

Fixed-point governor
Acyclic model composer

Range and Set Variation
Non-linear optimizer




Mabius Framework Components

Solver




Model Construction Process

Models expressed in different
framework components can be Composed
combined to form larger models Model

— One or more atomic and/or

Atomic
Model

composed models form a

composed model

— A atomic, composed, or
solvable model, together with

reward variables, form a
solvable model Solvable

Model
— One or more solvable or
connected models, together

Reward
Variables

with reward variables, form a
connected model

The model construction process

retains the structure of each '
constituent model, facilitating Connected
efficient solution. Model




Abstract Functional Interface Facilitates Interaction of
Models and Solution Engines

Simulation, State-
Space Generation,
and
Analytic/Numerical
Solvers

Abstract
Functional
Interface
Interactions

AFI

Project Manager

Model Specification,
Composition,
Reward Definition,
and Connection
Formalisms

Model and Solver
Editor Interactions

The abstract functional interface allows models to affect each other and be

acted on by solvers without understanding model semantics

A project manager maintains consistency when constructing new models,

performance/dependability variables, and studies from existing models




Technical Details: Abstract Functional Interface (AFI)

The abstract functional interface is a set of methods defined on a set of
“base classes” that all models must implement to interact within the
Mobius framework.

— The AFI acts as a communication interface between multiple,
possibly heterogeneous, models.

— Solvers communicate with models by calling methods in the AFI.

— The AFI can preserve special properties of models implemented in
particular formalisms since it only specifies an interface, not internal
representation, unlike the integrated framework approach which
converts models to a universal formalism.

— The AFI makes Mobius extensible, by hiding formalism-specific
details from interacting models or solvers, making is possible to add
modeling formalisms that interact with models described in other
formalisms and solvers, without changing them.




Model Support of the Abstract Functional Interface:
State Variables, Actions, and Properties

Formally, a model in the Mobius framework is a set of “state
variables,” a set of “actions,” and set of “properties”

State variables “contain” information about the state of the system
being modeled

— They have a type, which defines their “structure”
— They have a value, which defines the “state” of the variable

Actions prescribe how the value of state variables may change as a
function of time

Properties specify characteristics that may effect the solution of a
model

Other models and solvers may request information regarding or
change to state of a model’s state variables, actions, and groups via
the abstract functional interface

The format of this information is determined by the structure of a
model’s state variables and attributes of its actions




State Variable Specification in the Maobius Framework

« The set of all state variable types is denoted T.
« The set T is constructed by repeated application of the following rules:

/ZeTl.
NReT.

SeT. Setof names of state variables
If te T,then 2t = T. Restriction of a type

Ifte T,then2te 7.  Sets of types (unordered)
If 41,¢5....,t,, € T, then t; Xty X...Xt,, € T. Ordered lists of types




Action Specification in the Mobius Framework

* An action’s attributes specify how and when it changes state:

Enabled: X — {true, false}
Delay : X— (R=>—[0,1])
Effort :X— (R =>—[0,1])
Interrupt: X — {true, false}

Rank :X— Z" U{Undefined}

Weight :¥ — RZ U {Undefined)
Complete DIEED)
Policy : = — {DDD, ..., PPP}




Model State

A model’s state is the state of all its:
— State variables, and
— Actions

Generally speaking, the set of all possible states of a model is
uncountable, since certain state components are continuous

If all action time distributions in a model are exponential, and if all
marking dependent actions depend only on the model’s current state,
then the continuous component of action state can be ignored, and the
resulting behavior is Markov




Model Execution in the Mébius Framework

Models change state by the
firing of actions, according to

. e Worker
formalism-specific rules Effprt
hidden by AFI S
ometimes
The execution policy is defined
on a per action and per state
basis sits
. ) Always preserv® ®
— Actions can be interrupted,
reset, continue with a
different distribution, or

rd Always preserve
continue with time same !
distribution rce-rosample
— Generalizes and unifies
existing execution policies

— Details can be found in Interruption
technical report ...

Sometime

Minimum
Task

Always prl §0ﬁﬁetimesEff0rt




Model Composition

Model composition formalisms permit the construction of models from
other models by sharing state variables or actions between constituent
models

New model implements AFI, just like an atomic model
State variable sharing can be of two types:

— Equivalence sharing, where a state variable or “part” of state variable
from one model is identified with a state variable or “piece” of state
variable in another model (information flow is bi-directional)

— Functional sharing, where the state of a state variable in one model is
defined to be a function of another submodel’s state (information flow
is one-direction)

Two complete or partial state variables can be equivalently shared if:

— Their structure is the same (as defined by the state variable
specification syntax presented earlier - in short, they are of the same

type).
— They have the same Iinitial value




Model Connection

Model connection formalisms permit the construction of model

solutions from a set of models by exchanging “results” between the
models

The abstract functional interface provides the infrastructure necessary
to build connection formalisms, but none are currently implemented

More work needs to be done in this area
Potentially, “results” can be:
— The mean and/or variance of a the a performance variable

— The density or distribution function of a performance variable (e.g.
exponential-polynomial distribution)

— Some automatically-constructed more-abstract model
representation, e.g.,

» Hidden Markov model
* Markov-modulated Poisson processes




An Example Atomic Modeling Formalism: PEPA

PEPA, developed at the University of Edinburgh, is a stochastic
process algebra intended for performance evaluation.

PEPA differs from other Mobius formalisms in several ways.

Issues:

* How to build an AFI for PEPA

* What is a useful and intuitive notion of state?

* How to construct an equivalence sharing relationship

« Can we construct new composed model formalisms?




What are Process Algebras?

* View as a programming language
for describing models
* Central aims:

— Compositionality — a
methodology for systematically
building the complex from the
simple

— Concurrency — built-in for free,
as a consequence

* Prominent representatives:

— For research: CCS [Milner],
CSP [Hoare]

— For applications: LOTOS (ISO
Std. 8807) e.g. the study of
communications protocols

process Spec :=
enter.exit.Spec
endproc

process Peterson[pl enter,
pl exit, p2 enter, p2 exit]

hide
flagl, flag2,..
in
(Procl[..] <flagl,..> Procl..])

endproc




What is PEPA?

« PEPA stands for “Performance Evaluation Process Algebra”

* Primitive process algebra actions become timed PEPA
activities:

enter.exit.Spec <«---» (enter,r). (exit,s) .Spec

* rand s are the parameters of exponentially distributed
random variables which determine the time it takes for

each activity to complete

« What are the primitives for building PEPA models?




PEPA Combinators

Prefix: given an activity (a,r), and a process P, (a,r) .Pis a
process which performs the activity (a, r) and then becomes p

Choice: P + Qis a process which expresses competition between
P and Q. It is analogous to the following SAN fragment:

Cooperation: given processes P and Q, and a set of activity names
L, the process P <L> Q expresses the parallel composition of p
and @ with synchronization on L activities; c.f. increasing the

number of tokens in a SAN place

Hiding: given a process P, and a set of activity names L, the
process P /L hides those names in L from further interaction




The Underlying Model

« The model evolves from state to state by performing
activities:

(enter,r) (exit, s)

(enter,r) . (exit,s) .Spec —» (exit,s) .Spec —» Spec

* Rules are used to calculate the behavior of processes
from their subcomponents. Assume item is in L; then

(item, r) (item, s)

Producer —» Producer’ Consumer —P» Consumer’

(item, R)

Producer <L> Consumer —» Producer’ <L> Consumer’

» Leads to direct simulation, or an analytical solution




Representing PEPA State

A PEPA process evolves over time according to operational
transition rules

* We consider cyclic PEPA only, meaning that no dynamic

combinator (prefix and choice) ever governs a static combinator
(cooperation or hiding)

» This ensures that the structure of the PEPA term does not grow
unboundedly over time

* Not a serious restriction : cyclic PEPA is always used in “real-
life” models anyway

Let’s illustrate with an example




System

Representing PEPA State : Example

:= ((P <> Q)/{a}) <L> (R + 9)

(o, ) .P’

(a,s) .Q7 L

L 4 - “ L 4 - “
SN TN
LoD P N (as) @
. Q. . Q.
’0. ‘0‘ ’0. ‘0‘




Representing PEPA State (ctd.)

« We could enumerate the states of each dynamic (circled)
component; but there is no compelling way for a partner
model to use this data

 Instead, we use partial information about the state of each
dynamic component, and..

* We require the modeler to specify this information

This is done by extending PEPA to provide PEPAk.

PEPAk adds value-passing to PEPA.




PEPA4: Adding Value Passing

We extended PEPA with the following features:

- Formal Parameters: variables now have an arity; may be
instantiated with parameters e.g. a defining egn:
Plx,yl:=(a,r).P’

« Guards: the behavior specified by a process expression is only
enabled if the guard evaluates to true in the current state

» Value-Passing: values may be communicated between
dynamic components using activities

We decided additional features would not have increased the
usefulness of the language.

Theory is well-known! e.g. LOTOS (no stoch.), MLOTOS, EMPA...




PEPA4: An Example

Queue [m, s, n] := 1f (m < n) then (in,u) .Queue[m+1,s,n]

+ 1f (m > 0) then (out,v*min(s,m)) .Queue[m-1,s,n]

We provide a PEPA semantics in order to understand PEPA« processes.
For this example, it generates a set of definitions over s and n including:

Queueo,s,n := (in,u) .Queuei,s,n

Queuei,s,n := (in,u) .Queuei+l,s,n + (out,v*i) .Queuei-1,s,n 0 < i< s
Queuei,s,n = (in,u) .Queuei+l,s,n + (out,v*s) .Queuei-1,s,n S <= 1 < n
Queuen,s,n := (in,u) .Queuen-1,s,n

* No surprises here!

« To understand activity-based values passing, we translate (in?x,u) to
a sum over activities (ini,u) ; then we require input activities to
always be matched by an output over the lifetime of the process

« With above condition, we can show that we are not working with a
new process algebra — this reduces the proof burden




Mapping to the AFTI : State Variables

« For AFI state variables, we provide the modeler with
PEPAkx dynamic component process parameters

 The modeler may then create an equivalence sharing
relationship with a partner model, for example, a SAN

 If the partner changes a shared state variable, the PEPAk
process parameter’'s value is changed, and the future
behavior of the PEPAk process may be changed. However
the behavior is altered in a meaningful way!

For example, Queue [m, s,n] would export 3 state variables
— simple!




Mapping to the AFT : Actions

AFI actions may be used to specify impulse rewards on models

For AFI actions, we make available all possible combinations of
activities enabled due to cooperations between static PEPA«
components

We could choose all possible activities from each dynamic
component; this cuts down proliferation of actions, but loses modeling
power (no way to specify impulse as a result of a particular
cooperation)

We could choose all activities that may be enabled over the lifetime of
a process, but this cannot be calculated without exploring a state
space

Our proposal is a good compromise!




Implications

« The UltraSAN/Mobius modeler may now use PEPAkx models;
they may be composed with any other UltraSAN/Mobius
formalism; may have rewards specified over them; and may be
solved analytically or by simulation

« What happens to process algebra equivalences in an
equivalence sharing relationship?

« (Can we construct a new composed model formalism that
employs both equivalence sharing and more traditional
process algebra action sharing? To what extent can we exploit
model symmetries and “observational” equivalence?




Mdbius Tool Architecture

| Model Editor ' |Composer' |PV Editor ' Model Connector JJ | Study Editor'

’ Model Conn. Study Editor »
Object Code Object Code

Submodel ’ Composed s
Object Code Model Object

Code




Atomic Model Construction

Each atomic model editor permits
the specification of a particular
atomic model formalism -- editors
can be graphical or textual.

MObius toolkit provides Java
building blocks for editor
construction, easing editor
implementation.

Each editor must generate model
representation that can be
“executed” by Mobius solvers;
note that the representation can
be formalism specific.

Together, the code emitted by the
editor and formalism “library”
must implement the AFI to
models written in the formalism.

Multi—Proc: io_port_module
File Edit Globals Panel Panel Size

cormputer_failed

—8

mermory_failed

memory_chip_failure Case Distribution
Case 2 Case3 | Cased

Errothandlers

fif (rmermory_chips—=Mark() == 39)
return ({(1.0 — rmem_cov) * cormgp_cow);

else
return ({1.0 - RAM_cov) * (1.0 - mem_cov) * {comp_cow);
niversity of lllinais




Implementation of Abstract Functional Interface as
Base Class - Example Action Base Classes

bool Enabled() Determines whether the action is enabled in the current state.

double Weight() Weights are used to determine the probability of selecting an
action from the set of enabled actions in the current state

double Rate Returns the rate with which an exponentially timed action
fires.

bool ReactivationPredicate() Determines whether an action is reactivatable.

Bool ReactivationFunction() Determines if an action, whose ReactivationPredicate is true,
should restart after a state change in which the action is still
enabled.

double SampleDistribution() Samples the action’s distribution and returns the action’s time

to completion.

double* Returns the set of distribution parameters. The number of
ReturnDistributionParameters() parameters is determined by the action distribution function.

BaseActionClass* Fire () Defines how the action changes the state of the model.




Composed Model Construction

Composed model formalisms
take models (atomic or
composed) as input, and
generate a model.

Generated model implements
AFI (just like an atomic model)
so composed model can be
further composed.
Special properties of <
composition formalism (e.g. Al
symmetry) are hidden by AFl,
S0 can be automatically

Multi—Proc: multi_proc

Fil= Edit Globals Panel Panel Size

File Edit Globals Pa

Rep1 cpu_module errorhandlers io_port_module

meray_module

Define Shared State Wariable for Join1 Eity of lllinais

exploited by solvers and L st (ot Gl

applied when only partially HE. SE— SN —
present in a model. et e
AFI allows composed ey ™
submodels to interact with one S Scevarete | e s
another (e.g., by sharing state Stare AllSimier Varihls

variables) without o e et o] emsearse |
understanding details of other —

submodel formalisms. o ancel




Simulator Use of Base Classes

The simulator interacts with a solvable model using abstract functional
interface; Simulator does not know what formalism or formalisms it is

simulating!

Example base-class methods:

— Base Model
» CurrentState( )
» SetState( )
 ListOfActions( )
— Base Action
» Enabled()
» Fire()

Multi—Proc: vary_num_comp_sim

Simulation Parameters ‘( Metwork Sstup ‘( Run Sirnulation ‘( Sirmulation Info

Current Study | VARY_nUm_comgp Browse ‘

Sirnulation Tyoe: (@ Terminating Sirulation

| Bteachy State Simulation

Multi—Proc: vary_num_comp_sim

File  Edit

¥
Sirnulation Parameters t MNetwork Setup t Run Simulation  Simulation Info

Expetierment

Expetirent 0
Experiment 1

periment 2

Terminate Experirment

Show Results

Current Statistics

Current Mean Yalues

Unreliakility 5.147059E-4 +-1.00201636E-4

Eatches Reported: 3400

Curtent Bunning Tiree: 11

inois

L5 4 =i mulating Model ...




State-Space Generator Use of Base Classes

States = & * Generic “Fire” method changes the

NewStates = TheModel.CurrentState(); model’s state in a formalism-specific way

ActionSet = TheModel.ListOfActions(); y gase clasgtn:etholclls SteitetSize() and
While(NewStates != Q) ompareState() allow state-space

tor t tat '
TheModel.SetState(NewStates.getState()) ot fashion 06 stale space in &

EnabledActions = J
For all Action € ActionSet
If(Action.Enabled()) Multi—Proc: vary_num_comp_S5G
EnabledSet = EnabledSet + {Action}
End For

SSGInput | SSGOuput

Stuchy MNarme: vary_num_corrg

Whlle(EnabledSet 1= @) Output File Marme: Outpuivan/NurrberFrocessors.
EnabledAction = EnabledSet.getAction() Hash Value: 0d
EnabledSet = EnabledSet — {EnabledAction} L
EnableAction.Fire() .

If(TheModel.CurrentState() ¢ States)
NewStates = NewStates +
{TheModel.CurrentState()} ot ek
End While o 0 |
States = States + I Build Only (Do Not Executs)
{TheModel.CurrentState()}

End While

;'? MiEbius Reduced BEase Model Generator Yersion 1.0




odel Solution Engine Graphical User Interfaces
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File Edit
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File  Edit Hela
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I i 24
Eatches Reported Study Narre L 5 1000000 Stopping Criterion:
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#‘ Multi—Proc: vary_num_comp_55G
——
Default File  Edit ;
Mabius simfll Fii= ForTEl co reots o Multi—Proc: VaryNumberComputers
Simulating Wertbosity MNone BEG Input SS5G OQuiput File  Edit Help

Updating and making dependent modules. . Done
Compile and Link initiated on vany_num_corp_SSG.  State Generation Initiatsd on Experi
The global variskle valuss for experirent ‘Experirment 0 ans

CPU_cov double 0995
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Flag Absorbing Sates corg_cav doubls 095

failure_rate double  0.000876G
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Systern Time (seconds): 0
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Experiment_1{

Run In Background
Experiment_2 :Lerl':,;\/ double ghguﬁrt g Murrber of states in process: 10114
Place Comments in Outiut num—m”nf mod short 3 Murrber of states with rewand: 4706

e e R
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Mabius Project Status

Completed definition and implementation of abstract functional
interface.

Completed 3 Atomic Model formalisms: Balls and Buckets, PEPA
stochastic process algebra, Stochastic Activity Network

Implemented 2 Composition formalisms:Replicate/Join, Graph
Implemented one PV specification method: Reward Variables
Completed range, set, and Design of Experiment Editors

Developed results database, and integrated with formalisms and
solvers

Developed new connection method that uses distribution sharing

Completed multiple solution methods and integrated them into
Mobius: Steady-state simulator, Terminating simulator, State-
space generator, Uniformization and adaptive uniformization
transient solvers, Iterative steady-state solver (SOR), Direct
steady-state solver (LU Decomposition), Deterministic/ Exponential
steady-state solver




