
The Möbius Framework -
with an application to Stochastic Process Algebras

Project funded in part by the Motorola Center for High-Availability System Validation, under the umbrella of the
Motorola Communications Center, and National Science Foundation Next Generation Software Program

http://www.crhc.uiuc.edu/PERFORM

IFIP Working Group Meeting - Stenungsund, Sweden
July 2001

William H. Sanders

Performability Engineering Research Group
Coordinated Science Laboratory and Electrical and

Computer Engineering Department
University of Illinois at Urbana-Champaign

whs@crhc.uiuc.edu

Model-Based System Validation

• Goal: Determine, early in the design phase, the performance,
dependability, and performability of large-scale distributed systems.

• Experience:
– Building high-level CAD tools for such evaluation since 1984:

METASAN, UltraSAN, and Möbius
– UltraSAN modeling software licensed to approximately 250

academic sites.
– UltraSAN commercially licensed to several companies, including

Intel, Bell Communications Research, US West Advanced
Technologies, IBM, Motorola, Vysis, 3M, NASA, Bell Northern
Research, and Technicatome

– Current research directed toward efficiently solving models of very
large systems, using scalable ways to compose and connect
models together (Möbius Project).

Integrated Modeling Frameworks are Needed!

• No single formalism is best for representing all parts of a distributed
computing/communication system
– Computer hardware, networks, protocols, and applications each

call for a different representation
– Even within a “class” of application, different industry segments

use very different ways of representing a particular design
• No single solution method is adequate to solve all models

– Discrete-event simulation is efficient in many cases, but is
extremely slow in others (e.g., significant, but rare events (like
faults and buffer overflows), or extreme system complexity)

• Research in new modeling methods and tools is significantly
hampered by the close link between model specification and model
solution methods, and the closed nature of existing tools

Modelers Need Heterogeneous Models

Fault
Description Components Protocol Traffic Control/

Data Flow
Resource

Contention

VHDLFault Tree LOTOS,
Estelle

Queuing
Model

Block
Diagram
Language

Stochastic
Petri Nets,

SANs

Hardware Network Application OS

Computer System

?

Related Work

• Single formalism, multiple solution methods
– e.g., DyQN-Tool+, GreatSPN, UltraSAN, TANGRAM-II

• Integrated software environment
– ISME, IDEAS, Freud

• Multi-formalism multi-solution
– SHARPE, SMART

Möbius Project Research Goal

• Development of tools to predict the performance, dependability, and
performability of distributed computing/communication systems
– Such systems are complex combinations of:

• Computing hardware
• Networks
• Operating systems
• Software

 (First goal was not to prove logical system properties, although this
may be possible within framework (and what I would like to learn more
about at this workshop!))

• We believe such tools can be realized by:
– Developing a framework/tool that supports multiple modeling

formalisms, at multiple levels of detail and abstraction, and multiple
model solution methods

– Developing new model representation and solution methods
(within the framework, and implemented in the tool) that scale well
with increasing system complexity

Möbius Framework

• Model: An abstract representation of some system
• Formalism: A modeling language
• Framework: A “language” in which modeling languages may be

expressed

Formalism

Formalism

Formalism

Model

Model

Model

Möbius
Framework

Solver

Solver

Solver

The Möbius Framework ...

• Expresses most existing modeling languages (except some simulation
languages)

• Retains the ability for efficient solution
• Facilitates homogeneous modeling
• Is a vehicle for researching new model composition, connection,

reward specification, and solution methods

Model Specification

Submodel Interaction

Atomic Model
DSPN, GSPN, Markov chain,
Queueing Network, SAN, SAN,
SPA, other SPN extensions,
Domain-specific formalism

Composed Model Graph interconnection
Kronecker Composition (SAN),
Replicate/Join, SPA
Domain-specific formalism

Solvable Model Rate/Impulse reward variables
Path-based reward variables
Domain-specific formalism

Connected Model

Study Specifier
(generates multiple

models)

Fixed-point governor
Acyclic model composer

Range and Set Variation
Non-linear optimizer

Framework Component Example Formalisms

Model Categories in the Möbius Framework

Möbius Framework Components

Solvable
Model

Atomic
Model

Composed
Model

Solved
Model

Connected
Model

State
Variables

Properties

Möbius
Execution

Policy
Flexible

Execution
Policy

Well-
Specified
Checker

Model
Connection

Actions Reward
Variables

Model
Composition Solver Results

Model Construction Process

Connected
Model

Reward
Variables

• Models expressed in different
framework components can be
combined to form larger models
– One or more atomic and/or

composed models form a
composed model

– A atomic, composed, or
solvable model, together with
reward variables, form a
solvable model

– One or more solvable or
connected models, together
with reward variables, form a
connected model

• The model construction process
retains the structure of each
constituent model, facilitating
efficient solution.

Solvable
Model

Composed
Model

Atomic
Model

• The abstract functional interface allows models to affect each other and be
acted on by solvers without understanding model semantics

• A project manager maintains consistency when constructing new models,
performance/dependability variables, and studies from existing models

Abstract Functional Interface Facilitates Interaction of
Models and Solution Engines

Model Specification,
Composition,
Reward Definition,
and Connection
Formalisms

Simulation, State-
Space Generation,
and
Analytic/Numerical
Solvers

Abstract
Functional
Interface
Interactions

Model and Solver
Editor Interactions

Project Manager
AFI

Technical Details: Abstract Functional Interface (AFI)

 The abstract functional interface is a set of methods defined on a set of
“base classes” that all models must implement to interact within the
Möbius framework.
– The AFI acts as a communication interface between multiple,

possibly heterogeneous, models.
– Solvers communicate with models by calling methods in the AFI.
– The AFI can preserve special properties of models implemented in

particular formalisms since it only specifies an interface, not internal
representation, unlike the integrated framework approach which
converts models to a universal formalism.

– The AFI makes Möbius extensible, by hiding formalism-specific
details from interacting models or solvers, making is possible to add
modeling formalisms that interact with models described in other
formalisms and solvers, without changing them.

Model Support of the Abstract Functional Interface:
State Variables, Actions, and Properties

• Formally, a model in the Möbius framework is a set of “state
variables,” a set of “actions,” and set of “properties”

• State variables “contain” information about the state of the system
being modeled
– They have a type, which defines their “structure”
– They have a value, which defines the “state” of the variable

• Actions prescribe how the value of state variables may change as a
function of time

• Properties specify characteristics that may effect the solution of a
model

• Other models and solvers may request information regarding or
change to state of a model’s state variables, actions, and groups via
the abstract functional interface

• The format of this information is determined by the structure of a
model’s state variables and attributes of its actions

State Variable Specification in the Möbius Framework

• The set of all state variable types is denoted T.
• The set T is constructed by repeated application of the following rules:

.... then ,...,, If
.2 then , If

.2 then , If

.
.
.

2121

t

t

TtttTttt
TTt

TTt

TS
T
TZ

nn ∈×××∈
∈∈

⊂∈

∈
∈ℜ
∈

Restriction of a type

Sets of types (unordered)

Ordered lists of types

Set of names of state variables

Action Specification in the Möbius Framework

• An action’s attributes specify how and when it changes state:

PPP} ..., {DDD, :Policy
 : Complete

}{ :Weight

}{ Z :Rank

false} {true, :Interrupt
[0,1]) (: Effort
[0,1]) (:Delay

false} {true, :Enabled

→Σ
Σ→Σ

∪ℜ→Σ

∪→Σ

→Σ
≥→ℜ→Σ
≥→ℜ→Σ

→Σ

≥

+

Undefined

Undefined

Model State

• A model’s state is the state of all its:
– State variables, and
– Actions

• Generally speaking, the set of all possible states of a model is
uncountable, since certain state components are continuous

• If all action time distributions in a model are exponential, and if all
marking dependent actions depend only on the model’s current state,
then the continuous component of action state can be ignored, and the
resulting behavior is Markov

Model Execution in the Möbius Framework

• Models change state by the
firing of actions, according to
formalism-specific rules
hidden by AFI

• The execution policy is defined
on a per action and per state
basis
– Actions can be interrupted,

reset, continue with a
different distribution, or
continue with time same
distribution

– Generalizes and unifies
existing execution policies

– Details can be found in
technical report ...

Worker
Effort

Sometimes

Always preserve

Always discard
Never

Always

Sometimes

Interruption

reactivation

race-resample

prd
Always
discard

Always preserve
pri Sometimes

Minimum
Task
Effort

prs

Model Composition

• Model composition formalisms permit the construction of models from
other models by sharing state variables or actions between constituent
models

• New model implements AFI, just like an atomic model
• State variable sharing can be of two types:

– Equivalence sharing, where a state variable or “part” of state variable
from one model is identified with a state variable or “piece” of state
variable in another model (information flow is bi-directional)

– Functional sharing, where the state of a state variable in one model is
defined to be a function of another submodel’s state (information flow
is one-direction)

• Two complete or partial state variables can be equivalently shared if:
– Their structure is the same (as defined by the state variable

specification syntax presented earlier - in short, they are of the same
type).

– They have the same initial value

Model Connection

• Model connection formalisms permit the construction of model
solutions from a set of models by exchanging “results” between the
models

• The abstract functional interface provides the infrastructure necessary
to build connection formalisms, but none are currently implemented

• More work needs to be done in this area
• Potentially, “results” can be:

– The mean and/or variance of a the a performance variable
– The density or distribution function of a performance variable (e.g.

exponential-polynomial distribution)
– Some automatically-constructed more-abstract model

representation, e.g.,
• Hidden Markov model
• Markov-modulated Poisson processes

An Example Atomic Modeling Formalism: PEPA

PEPA, developed at the University of Edinburgh, is a stochastic
process algebra intended for performance evaluation.

PEPA differs from other Möbius formalisms in several ways.

Issues:

• How to build an AFI for PEPA

• What is a useful and intuitive notion of state?

• How to construct an equivalence sharing relationship

• Can we construct new composed model formalisms?

What are Process Algebras?

• View as a programming language
for describing models

• Central aims:
– Compositionality – a

methodology for systematically
building the complex from the
simple

– Concurrency – built-in for free,
as a consequence

• Prominent representatives:
– For research: CCS [Milner],

CSP [Hoare]
– For applications: LOTOS (ISO

Std. 8807) e.g. the study of
communications protocols

process Spec :=
enter.exit.Spec
endproc

process Peterson[p1_enter,
p1_exit, p2_enter, p2_exit] :=

hide
flag1,flag2,…

in
(Proc[…] <flag1,…> Proc[…])

endproc

…

What is PEPA?

• PEPA stands for “Performance Evaluation Process Algebra”

• Primitive process algebra actions become timed PEPA
activities:

enter.exit.Spec (enter,r).(exit,s).Spec

• r and s are the parameters of exponentially distributed
random variables which determine the time it takes for
each activity to complete

• What are the primitives for building PEPA models?

PEPA Combinators

1. Prefix: given an activity (a,r), and a process P, (a,r).P is a
process which performs the activity (a,r) and then becomes P

2. Choice: P + Q is a process which expresses competition between
P and Q. It is analogous to the following SAN fragment:

3. Cooperation: given processes P and Q, and a set of activity names
L, the process P <L> Q expresses the parallel composition of P
and Q with synchronization on L activities; c.f. increasing the
number of tokens in a SAN place

4. Hiding: given a process P, and a set of activity names L, the
process P/L hides those names in L from further interaction

The Underlying Model

• The model evolves from state to state by performing
activities:

(enter,r).(exit,s).Spec (exit,s).Spec Spec

(enter,r) (exit,s)

• Rules are used to calculate the behavior of processes
from their subcomponents. Assume item is in L; then

Producer Producer’

(item, r)

Consumer Consumer’

(item, s)

Producer <L> Consumer Producer’ <L> Consumer’

(item, R)

• Leads to direct simulation, or an analytical solution

Representing PEPA State

• A PEPA process evolves over time according to operational
transition rules

• We consider cyclic PEPA only, meaning that no dynamic
combinator (prefix and choice) ever governs a static combinator
(cooperation or hiding)

• This ensures that the structure of the PEPA term does not grow
unboundedly over time

• Not a serious restriction : cyclic PEPA is always used in “real-
life” models anyway

Let’s illustrate with an example

Representing PEPA State : Example

System := ((P <αααα> Q)/{αααα}) <L> (R + S)

P := (αααα,r).P’

Q := (αααα,s).Q’

Representing PEPA State (ctd.)

• We could enumerate the states of each dynamic (circled)
component; but there is no compelling way for a partner
model to use this data

• Instead, we use partial information about the state of each
dynamic component, and..

• We require the modeler to specify this information

This is done by extending PEPA to provide PEPAk.

PEPAk adds value-passing to PEPA.

PEPAk : Adding Value Passing

We extended PEPA with the following features:

• Formal Parameters: variables now have an arity; may be
instantiated with parameters e.g. a defining eqn:

P[x,y]:=(αααα,r).P’
• Guards: the behavior specified by a process expression is only

enabled if the guard evaluates to true in the current state
• Value-Passing: values may be communicated between

dynamic components using activities

We decided additional features would not have increased the
usefulness of the language.

Theory is well-known! e.g. LOTOS (no stoch.), MLOTOS, EMPA…

PEPAk : An Example
Queue[m,s,n] := if (m < n) then (in,u).Queue[m+1,s,n]

+ if (m > 0) then (out,v*min(s,m)).Queue[m-1,s,n]

We provide a PEPA semantics in order to understand PEPAk processes.
For this example, it generates a set of definitions over s and n including:

Queue0,s,n := (in,u).Queue1,s,n

Queuei,s,n := (in,u).Queuei+1,s,n + (out,v*i).Queuei-1,s,n 0 < i < s

Queuei,s,n := (in,u).Queuei+1,s,n + (out,v*s).Queuei-1,s,n s <= i < n

Queuen,s,n := (in,u).Queuen-1,s,n

• No surprises here!
• To understand activity-based values passing, we translate (in?x,u) to

a sum over activities (ini,u) ; then we require input activities to
always be matched by an output over the lifetime of the process

• With above condition, we can show that we are not working with a
new process algebra – this reduces the proof burden

Mapping to the AFI : State Variables

• For AFI state variables, we provide the modeler with
PEPAk dynamic component process parameters

• The modeler may then create an equivalence sharing
relationship with a partner model, for example, a SAN

• If the partner changes a shared state variable, the PEPAk

process parameter’s value is changed, and the future
behavior of the PEPAk process may be changed. However
the behavior is altered in a meaningful way!

For example, Queue[m,s,n] would export 3 state variables
– simple!

Mapping to the AFI : Actions

• AFI actions may be used to specify impulse rewards on models

• For AFI actions, we make available all possible combinations of
activities enabled due to cooperations between static PEPAk

components

• We could choose all possible activities from each dynamic
component; this cuts down proliferation of actions, but loses modeling
power (no way to specify impulse as a result of a particular
cooperation)

• We could choose all activities that may be enabled over the lifetime of
a process, but this cannot be calculated without exploring a state
space

Our proposal is a good compromise!

Implications

• The UltraSAN/Möbius modeler may now use PEPAk models;
they may be composed with any other UltraSAN/Möbius
formalism; may have rewards specified over them; and may be
solved analytically or by simulation

• What happens to process algebra equivalences in an
equivalence sharing relationship?

• Can we construct a new composed model formalism that
employs both equivalence sharing and more traditional
process algebra action sharing? To what extent can we exploit
model symmetries and “observational” equivalence?

Möbius Tool Architecture

Linker

Executable
Model

Submodel
Object Code

Composed
Model Object

Code
PV Object Code Study Editor

Object Code
Model Conn.
Object Code

Model Editor PV Editor `Study Editor`Model ConnectorComposer

Formalism
Libraries

Solver
Libraries

Model Editor Interaction

Atomic Model Construction

• Each atomic model editor permits
the specification of a particular
atomic model formalism -- editors
can be graphical or textual.

• Möbius toolkit provides Java
building blocks for editor
construction, easing editor
implementation.

• Each editor must generate model
representation that can be
“executed” by Möbius solvers;
note that the representation can
be formalism specific.

• Together, the code emitted by the
editor and formalism “library”
must implement the AFI to
models written in the formalism.

Implementation of Abstract Functional Interface as
Base Class - Example Action Base Classes

bool Enabled() Determines whether the action is enabled in the current state.

double Weight() Weights are used to determine the probability of selecting an
action from the set of enabled actions in the current state

double Rate Returns the rate with which an exponentially timed action
fires.

bool ReactivationPredicate() Determines whether an action is reactivatable.

Bool ReactivationFunction() Determines if an action, whose ReactivationPredicate is true,
should restart after a state change in which the action is still
enabled.

double SampleDistribution() Samples the action’s distribution and returns the action’s time
to completion.

double*
ReturnDistributionParameters()

Returns the set of distribution parameters. The number of
parameters is determined by the action distribution function.

BaseActionClass* Fire () Defines how the action changes the state of the model.

Composed Model Construction

• Composed model formalisms
take models (atomic or
composed) as input, and
generate a model.

• Generated model implements
AFI (just like an atomic model)
so composed model can be
further composed.

• Special properties of
composition formalism (e.g.
symmetry) are hidden by AFI,
so can be automatically
exploited by solvers and
applied when only partially
present in a model.

• AFI allows composed
submodels to interact with one
another (e.g., by sharing state
variables) without
understanding details of other
submodel formalisms.

• The simulator interacts with a solvable model using abstract functional
interface; Simulator does not know what formalism or formalisms it is
simulating!

• Example base-class methods:
– Base Model

• CurrentState()
• SetState()
• ListOfActions()

– Base Action
• Enabled()
• Fire()

Simulator Use of Base Classes

State-Space Generator Use of Base Classes
• Generic “Fire” method changes the

model’s state in a formalism-specific way
• Base class methods StateSize() and

CompareState() allow state-space
generator to manage state space in a
generic fashion

States = ∅∅∅∅
NewStates = TheModel.CurrentState();
ActionSet = TheModel.ListOfActions();
While(NewStates != ∅∅∅∅)
 TheModel.SetState(NewStates.getState())
 EnabledActions = ∅∅∅∅
 For all Action ∈∈∈∈ ActionSet
 If(Action.Enabled())

 EnabledSet = EnabledSet + {Action}
 End For
 While(EnabledSet != ∅∅∅∅)
 EnabledAction = EnabledSet.getAction()
 EnabledSet = EnabledSet – {EnabledAction}
 EnableAction.Fire()
 If(TheModel.CurrentState() ∉∉∉∉ States)

 NewStates = NewStates +
 {TheModel.CurrentState()}

 End While
 States = States +
 {TheModel.CurrentState()}
End While

Model Solution Engine Graphical User Interfaces

Möbius Project Status

• Completed definition and implementation of abstract functional
interface.

• Completed 3 Atomic Model formalisms: Balls and Buckets, PEPA
stochastic process algebra, Stochastic Activity Network

• Implemented 2 Composition formalisms:Replicate/Join, Graph
• Implemented one PV specification method: Reward Variables
• Completed range, set, and Design of Experiment Editors
• Developed results database, and integrated with formalisms and

solvers
• Developed new connection method that uses distribution sharing
• Completed multiple solution methods and integrated them into

Möbius: Steady-state simulator, Terminating simulator, State-
space generator, Uniformization and adaptive uniformization
transient solvers, Iterative steady-state solver (SOR), Direct
steady-state solver (LU Decomposition), Deterministic/ Exponential
steady-state solver

