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Model-Based System Validation

• Goal:  Determine, early in the design phase, the performance, 
dependability, and performability of large-scale distributed systems.

• Experience:
– Building high-level CAD tools for such evaluation since 1984: 

METASAN, UltraSAN, and Möbius
– UltraSAN modeling software licensed to approximately 250 

academic sites.
– UltraSAN commercially licensed to several companies, including 

Intel, Bell Communications Research, US West Advanced 
Technologies, IBM, Motorola, Vysis, 3M, NASA, Bell Northern 
Research, and Technicatome

– Current research directed toward efficiently solving models of very 
large systems, using scalable ways to compose and connect 
models together (Möbius Project).



Integrated Modeling Frameworks are Needed!

• No single formalism is best for representing all parts of a distributed 
computing/communication system
– Computer hardware, networks, protocols, and applications each 

call for a different representation
– Even within a “class” of application, different industry segments 

use very different ways of representing a particular design  
• No single solution method is adequate to solve all models

– Discrete-event simulation is efficient in many cases, but is 
extremely slow in others (e.g., significant, but rare events (like 
faults and buffer overflows), or extreme system complexity)

• Research in new modeling methods and tools is significantly 
hampered by the close link between model specification and model
solution methods, and the closed nature of existing tools
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Related Work

• Single formalism, multiple solution methods
– e.g., DyQN-Tool+, GreatSPN, UltraSAN, TANGRAM-II

• Integrated software environment
– ISME, IDEAS, Freud

• Multi-formalism multi-solution
– SHARPE, SMART



Möbius Project Research Goal

• Development of tools to predict the performance, dependability, and 
performability of distributed computing/communication systems
– Such systems are complex combinations of:

• Computing hardware
• Networks
• Operating systems
• Software

 (First goal was not to prove logical system properties, although this 
may be possible within framework (and what I would like to learn more 
about at this workshop!))

• We believe such tools can be realized by:
– Developing a framework/tool that supports multiple modeling 

formalisms, at multiple levels of detail and abstraction, and multiple 
model solution methods

– Developing new model representation and solution methods 
(within the framework, and implemented in the tool) that scale well 
with increasing system complexity



Möbius Framework

• Model: An abstract representation of some system
• Formalism: A modeling language
• Framework: A “language” in which modeling languages may be 

expressed
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The Möbius Framework ...

• Expresses most existing modeling languages (except some simulation 
languages)

• Retains the ability for efficient solution
• Facilitates homogeneous modeling
• Is a vehicle for researching new model composition, connection, 

reward specification, and solution methods
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Möbius Framework Components
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Model Construction Process
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• Models expressed in different 
framework components can be 
combined to form larger models
– One or more atomic and/or 

composed models form a 
composed model

– A atomic, composed, or 
solvable model, together with 
reward variables, form a 
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• The abstract functional interface allows models to affect each other and be 
acted on by solvers without understanding model semantics

• A project manager maintains consistency when constructing new models, 
performance/dependability variables, and studies from existing models

Abstract Functional Interface Facilitates Interaction of 
Models and Solution Engines
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Technical Details: Abstract Functional Interface (AFI)

 The abstract functional interface is a set of methods defined on a set of 
“base classes” that all models must implement to interact within the 
Möbius framework.
– The AFI acts as a communication interface between multiple, 

possibly heterogeneous, models.
– Solvers communicate with models by calling methods in the AFI.
– The AFI can preserve special properties of models implemented in 

particular formalisms since it only specifies an interface, not internal 
representation, unlike the integrated framework approach which 
converts models to a universal formalism.

– The AFI makes Möbius extensible, by hiding formalism-specific 
details from interacting models or solvers, making is possible to add 
modeling formalisms that interact with models described in other
formalisms and solvers, without changing them. 



Model Support of the Abstract Functional Interface: 
State Variables, Actions, and Properties

• Formally, a model in the Möbius framework is a set of “state 
variables,” a set of “actions,” and set of “properties”

• State variables “contain” information about the state of the system 
being modeled
– They have a type, which defines their “structure”
– They have a value, which defines the “state” of the variable

• Actions prescribe how the value of state variables may change as a 
function of time

• Properties specify characteristics that may effect the solution of a 
model

• Other models and solvers may request information regarding or 
change to state of a model’s state variables, actions, and groups via 
the abstract functional interface

• The format of this information is determined by the structure of a 
model’s state variables and attributes of its actions



State Variable Specification in the Möbius Framework

• The set of all state variable types is denoted T.
• The set T is constructed by repeated application of the following rules:
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Action Specification in the Möbius Framework

• An action’s attributes specify how and when it changes state:
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Model State

• A model’s state is the state of all its:
– State variables, and
– Actions

• Generally speaking, the set of all possible states of a model is
uncountable, since certain state components are continuous

• If all action time distributions in a model are exponential, and if all 
marking dependent actions depend only on the model’s current state, 
then the continuous component of action state can be ignored, and the 
resulting behavior is Markov



Model Execution in the Möbius Framework

• Models change state by the 
firing of actions, according to 
formalism-specific rules 
hidden by AFI

• The execution policy is defined 
on a per action and per state 
basis
– Actions can be interrupted, 

reset, continue with a 
different distribution, or 
continue with time same 
distribution

– Generalizes and unifies 
existing execution policies 

– Details can be found in 
technical report ...
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Model Composition

• Model composition formalisms permit the construction of models from 
other models by sharing state variables or actions between constituent 
models

• New model implements AFI, just like an atomic model
• State variable sharing can be of two types:

– Equivalence sharing, where a state variable or “part” of state variable 
from one model is identified with a state variable or “piece” of state 
variable in another model (information flow is bi-directional)

– Functional sharing,  where the state of a state variable in one model is 
defined to be a function of another submodel’s state (information flow 
is one-direction) 

• Two complete or partial state variables can be equivalently shared if:
– Their structure is the same (as defined by the state variable 

specification syntax presented earlier - in short, they are of the same 
type).

– They have the same initial value 



Model Connection

• Model connection formalisms permit the construction of model 
solutions from a set of models by exchanging “results” between the 
models

• The abstract functional interface provides the infrastructure necessary 
to build connection formalisms, but none are currently implemented

• More work needs to be done in this area
• Potentially, “results” can be:

– The mean and/or variance of a the a performance variable
– The density or distribution function of a performance variable (e.g. 

exponential-polynomial distribution)
– Some automatically-constructed more-abstract model 

representation, e.g., 
• Hidden Markov model
• Markov-modulated Poisson processes



An Example Atomic Modeling Formalism: PEPA

PEPA, developed at the University of Edinburgh, is a stochastic 
process algebra intended for performance evaluation. 

PEPA differs from other Möbius formalisms in several ways.

Issues:

• How to build an AFI for PEPA

• What is a useful and intuitive notion of state?

• How to construct an equivalence sharing relationship

• Can we construct new composed model formalisms?



What are Process Algebras?

• View as a programming language
for describing models

• Central aims:
– Compositionality – a 

methodology for systematically 
building the complex from the 
simple

– Concurrency – built-in for free, 
as a consequence

• Prominent representatives:
– For research: CCS [Milner], 

CSP [Hoare]
– For applications: LOTOS (ISO 

Std. 8807) e.g. the study of 
communications protocols

process Spec :=
enter.exit.Spec
endproc

process Peterson[p1_enter,
p1_exit, p2_enter, p2_exit] :=

hide
flag1,flag2,…

in
(Proc[…] <flag1,…> Proc[…])

endproc

…



What is PEPA?

• PEPA stands for “Performance Evaluation Process Algebra”

• Primitive process algebra actions become timed PEPA 
activities:

enter.exit.Spec (enter,r).(exit,s).Spec

• r and s are the parameters of exponentially distributed 
random variables which determine the time it takes for 
each activity to complete

• What are the primitives for building PEPA models?



PEPA Combinators

1. Prefix: given an activity (a,r), and a process P, (a,r).P is a 
process which performs the activity (a,r) and then becomes P

2. Choice: P + Q is a process which expresses competition between 
P and Q. It is analogous to the following SAN fragment:

3. Cooperation: given processes P and Q, and a set of activity names 
L, the process P <L> Q expresses the parallel composition of P
and Q with synchronization on L activities; c.f. increasing the 
number of tokens in a SAN place

4. Hiding: given a process P, and a set of activity names L, the 
process P/L hides those names in L from further interaction



The Underlying Model

• The model evolves from state to state by performing 
activities:

(enter,r).(exit,s).Spec (exit,s).Spec Spec

(enter,r) (exit,s)

• Rules are used  to calculate the behavior of processes 
from their subcomponents. Assume item is in L; then

Producer Producer’

(item, r)

Consumer Consumer’

(item, s)

Producer <L> Consumer Producer’ <L> Consumer’

(item, R)

• Leads to direct simulation, or an analytical solution



Representing PEPA State

• A PEPA process evolves over time according to operational 
transition rules

• We consider cyclic PEPA only, meaning that no dynamic
combinator (prefix and choice) ever governs a static combinator
(cooperation or hiding)

• This ensures that the structure of the PEPA term does not grow 
unboundedly over time

• Not a serious restriction : cyclic PEPA is always used in “real-
life” models anyway

Let’s illustrate with an example



Representing PEPA State : Example

System := ((P <αααα> Q)/{αααα}) <L> (R + S)

P := (αααα,r).P’

Q := (αααα,s).Q’



Representing PEPA State (ctd.)

• We could enumerate the states of each dynamic (circled) 
component; but there is no compelling way for a partner 
model to use this data

• Instead, we use partial information about the state of each 
dynamic component, and..

• We require the modeler to specify this information

This is done by extending PEPA to provide PEPAk.

PEPAk  adds value-passing to PEPA.



PEPAk : Adding Value Passing

We extended PEPA with the following features:

• Formal Parameters: variables now have an arity; may be 
instantiated with parameters e.g. a defining eqn:  

P[x,y]:=(αααα,r).P’
• Guards: the behavior specified by a process expression is only 

enabled if the guard evaluates to true in the current state
• Value-Passing: values may be communicated between 

dynamic components using activities

We decided additional features would not have increased the 
usefulness of the language.

Theory is well-known! e.g. LOTOS (no stoch.), MLOTOS, EMPA…



PEPAk : An Example
Queue[m,s,n] := if (m < n) then (in,u).Queue[m+1,s,n]

+ if (m > 0) then (out,v*min(s,m)).Queue[m-1,s,n]

We provide a PEPA semantics in order to understand PEPAk processes. 
For this example, it generates a set of definitions over s and n including:

Queue0,s,n := (in,u).Queue1,s,n

Queuei,s,n := (in,u).Queuei+1,s,n + (out,v*i).Queuei-1,s,n 0 < i < s

Queuei,s,n := (in,u).Queuei+1,s,n + (out,v*s).Queuei-1,s,n s <= i < n

Queuen,s,n := (in,u).Queuen-1,s,n

• No surprises here!
• To understand activity-based values passing, we translate (in?x,u) to    

a sum over activities (ini,u) ; then we require input activities to 
always be matched by an output over the lifetime of the process

• With above condition, we can show that we are not working with a
new process algebra – this reduces the proof burden



Mapping to the AFI : State Variables

• For AFI state variables, we provide the modeler with 
PEPAk dynamic component process parameters

• The modeler may then create an equivalence sharing 
relationship with a partner model, for example, a SAN

• If the partner changes a shared state variable, the PEPAk

process parameter’s value is changed, and the future 
behavior of the PEPAk process may be changed. However 
the behavior is altered in a meaningful way!

For example, Queue[m,s,n] would export 3 state variables 
– simple!



Mapping to the AFI : Actions

• AFI actions may be used to specify impulse rewards on models

• For AFI actions, we make available all possible combinations of 
activities enabled due to cooperations between static PEPAk

components 

• We could choose all possible activities from each dynamic 
component; this cuts down proliferation of actions, but loses modeling 
power (no way to specify impulse as a result of a particular 
cooperation)

• We could choose all activities that may be enabled over the lifetime of 
a process, but this cannot be calculated without exploring a state 
space

Our proposal is a good compromise!



Implications

• The UltraSAN/Möbius modeler may now use PEPAk models; 
they may be composed with any other UltraSAN/Möbius
formalism; may have rewards specified over them; and may be 
solved analytically or by simulation

• What happens to process algebra equivalences in an 
equivalence sharing relationship?

• Can we construct a new composed model formalism that 
employs both equivalence sharing and more traditional 
process algebra action sharing? To what extent can we exploit 
model symmetries and “observational” equivalence?



Möbius Tool Architecture
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Atomic Model Construction

• Each atomic model editor permits 
the specification of a particular 
atomic model formalism -- editors 
can be graphical or textual.

• Möbius toolkit provides Java 
building blocks for editor 
construction, easing editor 
implementation.

• Each editor must generate model 
representation that can be 
“executed” by Möbius solvers; 
note that the representation can 
be formalism specific.

• Together, the code emitted by the 
editor and formalism  “library” 
must implement the AFI to 
models written in the formalism.



Implementation of Abstract Functional Interface as 
Base Class - Example Action Base Classes

bool Enabled() Determines whether the action is enabled in the current state.

double Weight() Weights are used to determine the probability of selecting an
action from the set of enabled actions in the current state

double Rate Returns the rate with which an exponentially timed action
fires.

bool ReactivationPredicate() Determines whether an action is reactivatable.

Bool ReactivationFunction() Determines if an action, whose ReactivationPredicate is true,
should restart after a state change in which the action is still
enabled.

double SampleDistribution() Samples the action’s distribution and returns the action’s time
to completion.

double*
ReturnDistributionParameters()

Returns the set of distribution parameters.  The number of
parameters is determined by the action distribution function.

BaseActionClass* Fire () Defines how the action changes the state of the model.



Composed Model Construction

• Composed model formalisms 
take models (atomic or 
composed) as input, and 
generate a model.

• Generated model implements 
AFI (just like an atomic model) 
so composed model can be 
further composed.

• Special properties of 
composition formalism (e.g. 
symmetry) are hidden by AFI, 
so can be automatically 
exploited by solvers and 
applied when only partially 
present in a model.

• AFI allows composed 
submodels to interact with one 
another (e.g., by sharing state 
variables) without 
understanding details of other 
submodel formalisms.



• The simulator interacts with a solvable model using abstract functional 
interface; Simulator does not know what formalism or formalisms it is 
simulating!

• Example base-class methods:
– Base Model

• CurrentState( )
• SetState( )
• ListOfActions( )

– Base Action
• Enabled( )
• Fire( )

Simulator Use of Base Classes



State-Space Generator Use of Base Classes
• Generic “Fire” method changes the 

model’s state in a formalism-specific way
• Base class methods StateSize() and

CompareState() allow state-space 
generator to manage state space in a 
generic fashion

States = ∅∅∅∅
NewStates = TheModel.CurrentState();
ActionSet = TheModel.ListOfActions();
While(NewStates != ∅∅∅∅)
    TheModel.SetState(NewStates.getState())
    EnabledActions = ∅∅∅∅
    For all Action ∈∈∈∈ ActionSet
        If(Action.Enabled())

   EnabledSet = EnabledSet + {Action}
    End For
    While(EnabledSet != ∅∅∅∅)
       EnabledAction = EnabledSet.getAction()
       EnabledSet = EnabledSet – {EnabledAction}
       EnableAction.Fire()
       If(TheModel.CurrentState() ∉∉∉∉ States)

   NewStates = NewStates +
          {TheModel.CurrentState()}

    End While
    States = States +
                  {TheModel.CurrentState()}
End While



Model Solution Engine Graphical User Interfaces



Möbius Project Status

• Completed definition and implementation of abstract functional 
interface.

• Completed 3 Atomic Model formalisms: Balls and Buckets, PEPA 
stochastic process algebra, Stochastic Activity Network

• Implemented 2 Composition formalisms:Replicate/Join, Graph
• Implemented one PV specification method: Reward Variables
• Completed range, set, and Design of Experiment Editors
• Developed results database, and integrated with formalisms and 

solvers
• Developed new connection method that uses distribution sharing 
• Completed multiple solution methods and integrated them into 

Möbius:  Steady-state simulator, Terminating simulator, State-
space generator, Uniformization and adaptive uniformization
transient solvers, Iterative steady-state solver (SOR), Direct 
steady-state solver (LU Decomposition), Deterministic/ Exponential 
steady-state solver


