Collaborative Backup for Nomadic Devices

M.O. Killijian, D. Powell

48th Workshop IFIP WG 10.4 Hakone Japan, 4th July 2005
Context

- The MoSAIC project
 - Mobile Systems Availability Integrity and Confidentiality
- 3 years, 3 partners: LAAS, Eurécom, IRISA
 - Officially started September 2004
 - Funded by French Ministry of Research
- Nomadic device scenario
 - Mostly disconnected operations
 - Opportunistic wireless communication with similar devices
 - Peer-to-peer model of interactions
- Secure Collaborative Backup for Nomadic Devices
MoSAIC Goals

• In this context
 ▪ new distributed algorithms and mechanisms for the tolerance of
 • accidental faults
 • malicious faults
 ▪ without usual strong assumptions
 • synchronous communication
 • global clocks
 • Infrastructure

• New middleware for dependable mobile systems
Overview of MoSAIC project
Collaborative Backup Systems
Trust Management
Current Status
Scenario without MoSAIC
Scenario with MoSAIC
Challenges for Dependability

- Limited energy, computation and storage
- Only intermittent access to a fixed infrastructure
- No prior organization
- Ephemeral interactions
- Critical private data

+ Usual criteria for classic functionalities
 - User transparency
 - Usability
 - etc.
Potential faults are
- Permanent and transient faults affecting a data owner
- Theft or loss of a data owner
- Accidental or malicious faults affecting availability of data backups
- Accidental or malicious modification of data backups
- Malicious read access to data backups
- Malicious denial of service (sabotage)
- Selfish denial of service (refusal to cooperate)
Overview

- Overview of MoSAIC project
- **Collaborative Backup Systems**
- Trust Management
- Current Status
P2P Storage Systems

- Peer-to-peer file sharing systems
 - *Overlay networks, DHT, unstructured*
 - GNUnet
 - FreeNet
 - OceanStore

- Peer-to-peer backup systems
 - *Cooperation incentives, trust*
 - Elnikety, Pastiche, PeerStore, pStore for WANs
 - Flashback for PANs
Storage space discovery and allocation

Data chunk distribution

DHT
• Data ID → Node ID
• Cost of migration
• Data homogeneously distributed → no correlation between use and contribution

All participants

Specific groups

Hybrids

• Data chunks on subsets
• Metadata (IDs/participants, etc.) stored using DHTs

variants

• Each participant chooses a set of partners
• When a backup is required, chunks are sent to the set

• All the data vs. modified data
• Selection of set of partners: proximity, stability, etc.
Peer-to-peer backup system on the Internet
- No unique ID, no certified public keys, no routing
- Set of partners, point-to-point reciprocal relationships

Enforces
- Confidentiality: secret key cryptography (IDEA)
- Robustness: block redundancy using erasure codes (Reed-Solomon)
- Integrity: self-checking sub-blocks, crypto hash-keys (HMAC-MD5)
- Authentication: pairwise shared secret keys (Diffie-Hellman)

Attacks
- Selfish DoS: periodic challenges, grace and commitment periods
- Malicious DoS: protocol against man-in-the-middle attacks
Devices are part of a Personal Area Network (PAN)
 - Same owner: a priori mutual trust

Permanent fault (or theft) of the data owner
 - Same ID assigned to a new device
 - Reinitialized from backed-up data

Optimization of the restorable data
 - Limitation of # of copies (function of block priority)
 - Replication rate function of current number of copies
 - Taking into account heterogeneity (energy, storage)

Backup contracts: notion of lease
 - Duration of lease > expected duration of disconnection
 - Lease renewal at 50% expiry time
P2P vs. MoSAIC

- Fixed and unique IDs: not available
- Bandwidth, duration of connections: not known a priori
- Mobility: partnerships have to change and adapt
- Resource and node discovery: knowing one participant/repository is not enough
- Intermittent connection to fixed infrastructure: mostly disconnected
- Trust mechanisms for disconnected operation: reputation (e.g., using trusted HW)
Overview

- Overview of MoSAIC project
- Collaborative Backup Systems
- Trust Management
- Current Status
Why do we need cooperation incentives?

“Tragedy of the Commons” [Hardin68]

- Resource sharing
 - Naturally there are disincentives
 - Cooperation implies consumption of one's own resources
- Selfish users behave as free-riders
 - Consumption without contribution
- Very common behavior especially in large networks
 - 70% of Gnutella network users do not contribute
Routing in ad hoc networks

- Forwarding/routing packets costs
 - Energy, bandwidth, CPU cycles
- Different misbehaving nodes
 - Selfish DoS (passive) - priority is energy
 - Don’t forward packets
 - Malicious DoS (active) - priority is damage
 - Drop packets
 - Send wrong routes
- No a priori trust/confidence
- Enforce cooperation
 - Detection of misbehaving nodes
 - Isolation of misbehaving nodes
 - Stimulate and encourage cooperation
Without excessive resource consumption
Routing in ad hoc networks 2

- Use redundant routes for every packet
 - Increased energy consumption
- Consider false route information as old routes
 - Need a majority of honest nodes
- Use localization information for routing (GPS)
 - Privacy attacks
- **Money** as an incentive
 - Exchange virtual money for routing (e.g., Buttyan’s nuglets)
 - Requires secure kernels/trusted hardware
- Detect misbehavers, give them bad **reputation**
 - Global reputation requires access to servers
 - Local reputation (e.g., Marti’s watchdogs)
Trust Mechanisms

• Traditional key management
 ▪ Public Key Infrastructure (PKI)
 ▪ Trust authority to establish trust between mutually distrusting entities
 ▪ Centralized trust servers

• Trust established using long-term accountability
 ▪ Micro-payment against free-riding [Golle]
 ▪ Contributor ratings [eBay, bizrate, etc.]
 ▪ Centralized rating/bank servers

• Web of trust
 ▪ Distributed trust model, PGP-like
 ▪ Used primarily for key management
 ▪ Content-centric for reputation-guided searching [Poblano]
 ▪ Peer-centric [Law-Governed Interaction] needs trusted kernels/HW
Overview

- Overview of MoSAIC project
- Collaborative Backup Systems
- Trust Management
- **Current Status**
Node discovery

- Discovery of MoSAIC nodes
 - Online
 - Creation of ad hoc network
 - Active beaoning: low latency vs energy economy

- Discovery of Internet access
 - Be able to backup on reliable storage service

- Ad hoc and infrastructure mode at the same time
 - Cooperation + storage service access
Being Opportunistic

- Opportunistically use connection to Internet
 - “Mailbox” for storing the backup chunks
 - Accommodate several restoration models
 - Push: the contributor sends the chunks back home
 - Internet access, mailbox at the owner’s home
 - Pull: the data owner searches for the data when necessary
 - Ad hoc network, mailbox hosted by the contributor
 - Push-pull: storage service as an intermediary
 - Internet access, mailbox hosted by the storage service
Trust Management

- **Classic solutions**
 - Participants are almost always connected

- **Strong mobility, ephemerous connections, etc.**
 - Self-carried reputation (using trusted HW)
 - Checked by other participants
 - Link with the mailbox implementation
 - Collaboration incentives
 - Virtual money
 - Are both mechanisms necessary?

?
Architecture

User

File System

Storage Backup

Abstract Network Layer

Trusted HW Adhoc I/F Internet I/F

Trust Management Resource Management
Conclusion

- Scenario for
 - Designing new algorithms
 - Developing new middleware
- Implies fault-tolerance
 - Classic faults
 - Devices: crash of devices (owners and contributors), etc.
 - Data: integrity, confidentiality
 - Interaction faults (selfishness, maliciousness)
- New FT-enabling mechanisms
 - Self-carried reputation, virtual money, etc.
 - Opportunistic Internet backup, P2P interactions
- Project is 10 months old, still a lot to do ….
Collaborative Backup for Nomadic Devices

M.O. Killijian, D. Powell

48th Workshop IFIP WG 10.4 Hakone Japan, 4th July 2005
Buttyan’s nuglets

- Each node maintains a counter (nuglet)
 - Decreased when sending its own packet
 - Increased when forwarding a packet
 - The counter must remain positive

- The policy must be enforced
 - Use of tamperproof hardware
 - SIMcards, JavaCards, etc.
 - TPM
• Each node possesses a watchdog
 ▪ When a node sends a packet, the watchdog verifies that the neighbors forward it
Each node possesses a watchdog

- When a node sends a packet, the watchdog verifies that the neighbors forward it

Misbehaving nodes are detected: bad reputation

Limits

- Collisions
- Low transmission power attacks
- False positives
- Collusion
- Partial propagation