A new Programming Model for Dependable Adaptive Real-Time Applications

Presented by
António Casimiro

48th Meeting of IFIP Working Group 10.4
Hakone, Japan, July 1-5, 2005
Context

- Work developed in CORTEX, in which the concept of sentient objects was introduced
 - Autonomous entities with sentience (e.g. robots)
 - Geographical dispersion
 - Real-time & safety requirements
 - Availability

- Several issues addressed in CORTEX
 - Programming model for sentient applications
 - Interaction model
 - WAN-of-CANs architecture (systems-of-systems)
Dealing with uncertainty

- We defined a generic approach to reconcile uncertainty with the need for predictability.
- This could be (and was) applied in CORTEX, for sentient applications.
- Make the application behave [safely, timely, securely, etc] in the measure of what can be expected from the environment.
- Provide guarantees in the way that is done.

Dependable adaptation
Back to the roots

- Initial idea proposed in 1999
 - Formal definition of the relevant properties:
 - No-contamination
 - Coverage stability
 - Definition of approaches for dependable application programming:
 - Fail-safe approach (fail-safe applications)
 - Reconfiguration & adaptation (time-elastic, t-safe apps)
 - Replication
Meanwhile…

During the course of CORTEX
Programming principle

- General and systematic approach:
 - QoS coverage service
 - The user simply provides the needed coverage
 - The service indicates the bound that must be used
 - For applications with time-safety and time-elasticity
 - Timing failure detection service
 - The user provides a bound for some action
 - The service will execute an handler upon failure detection
Making it dependable

- To **adapt** the QoS it is necessary to:
 - monitor the actual QoS being provided
 - decide if adaptation is necessary

- To **dependably adapt** the QoS we must:
 - observe the environment in a dependable way
 - apply a rigorous strategy to decide when and how to adapt
Dependable adaptation

• First, it is necessary to trust the service that provides the measurements (durations)

 • in the value domain (correct measurements)…
 • …and in the time domain (timely measurements)
Dependable adaptation

Then, decide when and how to adapt.
Finally…

We applied the programming model
Sentient balls application

- Physical environment is emulated
Emulator

- **Emulated environment**: four entities shaped as colored balls move in a space with a certain speed and direction

- **A Virtual Instrumentation Interface** allows to:
 - acquire ball positions, directions and speeds;
 - change ball movement (speed and direction)

- The sentient application (ball controllers) uses the TCB for the underlying services:
 - QoS Adaptation
 - Timing Failure Detection
Fail-Safety Demo

● When Fail-Safety is **ON**:
 ● Delivery delay of events is controlled using the TCB distributed TFD
 ● Timing failure detected ➔ stop balls in timely way

● When Fail-Safety is **OFF**:
 ● Timing failures can cause **balls to crash!**
QoS-Adaptation Demo

• When QoS-Adaptation is ON:
 • The service indicates the estimated delay that corresponds to requested coverage value
 • This value is used to determine and set ball speed that preserves safety
 • Coverage stability is achieved

• When QoS-Adaptation is OFF:
 • No speed adaptation takes place
 • Assumed delay keeps constant, possibly leading to coverage degradation due to timing failures
A small taste of it...
Where is the paper?

- **MAIN FEATURE** of May 2005 issue of IEEE Distributed Systems On-Line Journal:
 - http://dsonline.computer.org
 - http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/0505&file=o5001.xml&xsl=article.xsl&

- **A New Programming Model for Dependable Adaptive Real-Time Applications**
 Pedro Martins, Paulo Sousa, António Casimiro, Paulo Veríssimo

You may also get there from our web site, www.navigators.di.fc.ul.pt under "Recent Documents".
...a small movie
Extra slides
QoS coverage service

In a system with a TCB

Diagram:
- Payload part
 - System Interface
 - QoS Mechanisms
 - QoS Provision
 - QoS Control
 - QoS Management
 - Extended Interface
 - TCB Interface
- Application
 - System Interface
 - Extended Interface
 - TCB Interface
- System Interface
 - QoS Extensions
 - QoS Coverage
 - Duration Measurement
 - Timing Failure Detection
 - Timely Execution
 - TCB Services
 - TCB Interface

TCB Services:
- Timing Failure Detection
- Timely Execution

TCB Interface:
- System Interface
 - QoS Mechanisms
 - QoS Provision
 - QoS Control
 - QoS Management
 - Extended Interface
 - TCB Interface

References:
- 48th Meeting of IFIP Working Group 10.4
- Hakone, Japan, July 1-5, 2005
Implementation

- We use a known result from prob. theory:

\[
P(D > t) \leq \frac{V(D)}{V(D) + (t - E(D))^2}, \text{ for all } t > E(D)
\]

- which allows the calculation of an upper bound for the probability of a time bound \(t \) being violated

- Given the coverage \(C_{\text{min}} \), \(t \) is obtained with:

\[
t = \frac{2E(D) + \sqrt{4E(D)^2 - 4E(D)^2 + V(D) - \frac{V(D)}{1 - C_{\text{min}}}}}{2}
\]
Implementation issues

- Estimation of Expected value and Variance
 - $E(D)$ and $V(D)$ correspond to the average and variance of a set of values obtained during an interval of mission
 - The size of the set depends on the application

- Contributing factors for accuracy loss:
 - Error associated to the measured durations
 - Error introduced by the estimation (finite number of samples)
 - Error that results from using an upper bound for the probability

- Results can be improved by reducing errors:
 - Measure durations with smaller errors
 - Get rid of pessimistic assumptions (e.g. no recognition abilities)