
 
 

Chapter 4 
Dependability Benchmark for Engine 
Control Applications in Automotive 

Embedded Systems 
 
 

Abstract  

The pervasive use of commercial off-the-shelf ECUs (Electronic Control Units) in 
automotive systems motivates the increasing interest of the community in methodologies 
for quantifying their dependability in a reproducible and cost-effective way. Although the 
core of modern vehicle engines is managed by the control algorithms running inside such 
units, no practical approach has been proposed so far to characterise the impact of faults on 
their behaviour or to compare alternative solutions concerning dependability features. This 
chapter specifies a dependability benchmark for engine control systems. It illustrates 
through a prototype, how this specification can be implemented and at which cost and 
effort. First, the essential features of automotive engine control systems are captured in a 
general model, which is then exploited in order to define a standard procedure to assess 
dependability related measures. It is worth noting that these measures are aimed at 
comparing different control applications in order to guide the purchase decisions that 
industrials must make when integrating such applications in their automotive systems. 
Second, the chapter illustrates how the benchmark specification can be implemented and it 
identifies the most important problems that one must solve during that phase. Third, the 
prototype is exploited in order to benchmark and compare the dependability of two 
different diesel engine electronic control units. This practical work is then used in order to 
reason about the portability of the benchmark, its low intrusiveness in the system under 
benchmarking, the repeatability of the experiments and the representativeness of the 
measures. Finally, the chapter presents conclusions. 
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4.1. Introduction  

In order to reduce temporal and economical development costs, automotive system 
developers are increasingly resorting to commercial off-the-self components (COTS), even 
when these components are to be integrated in critical parts of the vehicle. This situation 
motivates the need of new methodologies for quantifying, at least partially, the dependability 
of these components with comparison purposes, and this, despite the lack of information 
issued from their development.  

Electronic control units (ECUs for short) are at the core of the development of most modern 
automotive control systems, such as engine and anti-lock braking systems. These units are 
typically manufactured as systems-on-chip (SoCs) in order to increase their scale of 
integration and their performance [Leen and Heffernan 2002]. Among other advantages, they 
are easier and cheaper to program, calibrate and maintain than the older (most of times 
mechanical) control systems. The wide spectrum of possibilities offered by these ECUs 
motivates their success in the automotive industry.  

This chapter focuses on the specification of dependability benchmarks for automotive control 
applications running inside engine electronic control units. The goal is to provide means to 
support the purchase/selection decisions made by automotive engineers when integrating 
such applications in the ECUs they produce. In order to perceive the importance of this work, 
one should understand that engine control applications are corner stones in the construction 
of powertrain systems that harness the energy produced by the engine of a vehicle in order to 
produce motion. Their role in such systems is critical and it consists in managing the core of 
motor vehicles in order to maximize the power obtained from the combustion of air and fuel, 
while minimizing the production of pollutants [Heywood 1988]. Hence, incorrect control 
actions on the vehicle engine may not only damage the engine itself, but also have a negative 
impact on the safety of the vehicle passengers.  

The importance of engine control applications in modern combustion vehicles motivates the 
need of methodologies and tools for evaluating the impact of their failures over the engines 
they control. In our context, the notion of dependability benchmarking must be thus 
understood as the evaluation, of the safety of the ECU software from perspective of the 
engine. Most of the existing research in the domain concentrates on the verification of engine 
control algorithms according to their requirements [Fuchs et al. 1998; Leveson 2000]. Some 
research has also been performed on how to implement robust control strategies for tolerating 
the mechanical or electrical faults that may perturb the behaviour of electronic control units 
in general [Spooner and Passino 1997]. More focused on benchmarking, the Embedded 
Microprocessor Benchmark Consortium (EEMBC) has developed a meaningful set of 
performance benchmarks for embedded processors and compilers. The EEMBC benchmarks 
are composed of dozens of algorithms organized into benchmark suites targeting 
telecommunications, networking, automotive and industrial, consumer, and office equipment 
products. Among these benchmarks, AutoMark [EEMC 2003] is devoted to the evaluation of 
the microprocessors performance when running automotive and industrial algorithms, such as 
road speed calculation and angle to time conversion. The main difference with the type of 
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benchmark we consider relies on the fact that AutoMark focuses on the hardware in spite of 
the software running inside the ECU. 

From our viewpoint, benchmarking the dependability (safety) of engine control solutions 
mean, at least, studying to what extend (i) the external faults that may affect the execution of 
the ECU control algorithms, may perturb the control produced by this unit; and (ii) the 
(eventual) impact of this faulty control over the controlled engine. It is obvious that this study 
is conditioned by the viewpoint of the benchmark expected users. As previously stated, the 
goal is, in our case, to support the selection decisions made by automotive engineers when 
integrating engine control software in their power train systems.  

The rest of the chapter is structured as follows. Section 4.2 refines the notion of engine 
control application introduced above and defines a general model for such kind of 
applications. Section 4.3 exploits this model in order to specify a standard procedure to assess 
dependability related measures of an engine control application. Then, Section 4.4 
exemplifies this benchmark specification through a prototype implementation for diesel 
engine ECUs. Through this practical work, we illustrate the cost of implementing the 
proposed benchmark and the time required for its execution. Section 4.5 discusses to what 
extend the general properties described in Chapter 1 are verified by our benchmark and 
Section 4.6 presents conclusions. 

4.2. Basics on Automotive Engine Control Systems 

As stated in chapter 1, categorising a dependability benchmark means specifying its 
benchmarking context. The amount of different automotive embedded systems existing in 
today’s vehicles and their heterogeneity prevent the definition of a unique methodology for 
benchmarking any sort of automotive control application. Thus, a first step towards the 
specification of useful automotive benchmarks must be the clear definition of the 
benchmarking context. This context defines (and restricts) the application domain of the 
resulting benchmark specification. Then, it is important to understand the characteristics of 
the automotive embedded systems included in the considered domain. This enables the 
definition of general models that are representative of a large spectre of these automotive 
systems. These models are finally the abstractions on which dependability benchmarks for 
such systems can be then specified. 

According to the above reasoning, this section introduces the basics required for 
understanding the type of automotive systems to which our benchmark can be applied. These 
systems are four-stroke engines. Then, it is proposed a general model that captures the main 
characteristics of the control applications managing such type of systems.  

4.2.1. How Engines Work 

Engine control applications are responsible for the injection of a certain amount of fuel 
(gasoline or diesel) in a small, enclosed space and its combustion. As a result, a certain 
amount of energy is released in the form of expanding gas. Basically, an engine works in a 
cycle that allows setting off this combustion process thousands of times per minute. Then, the 
produced energy is harnessed in order to generate motion. 
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Most modern vehicles embed engines working with a so called four-stroke combustion cycle: 
These four strokes are the intake, the compression, the combustion and the exhaust stroke. 
The following points summarize what happens as the engine goes through its cycle: 

1. The piston starts at the top, the intake valve opens, and the piston moves down to 
let the engine take in a cylinder-full of air. This is what happens during the intake 
stroke in diesel and direct injection gasoline engines. In the other types of gasoline 
engines, the intake stroke fills the cylinder with a gasoline-air mixture.  

2. Then, the piston moves back up to compress the cylinder content. Compression 
makes the explosion more powerful. Diesel engine compression ratios are greater 
than gasoline ones.  

3. When the piston reaches the top of its stroke in a diesel engine, the fuel is then 
injected into the compressed air. The heat of the compressed air lights the fuel 
spontaneously. In non-direct injection gasoline engines, the fuel has been already 
injected during the intake stroke. Thus, when the piston reaches the top of its 
stroke, the spark plug emits a spark to ignite the gasoline. In both gasoline and 
diesel engines, the combustion of the air/fuel mixture drives the piston down. 

4. Once the piston hits the bottom of its stroke, the exhaust valve opens and the 
smoke leaves the cylinder to go out the tail pipe. Now the engine is ready for the 
next cycle, so it intakes, depending on the type of engine, another charge of air or 
air and fuel. 

 

Figure 4-1. High-level view of a (diesel) engine 

Typically, the linear motion of the piston is converted into rotational motion by the engine 
crank shaft, which is connected to the piston by a connecting rod (see Figure 4-1). The 
rotational motion is the one needed to rotate the car’s wheels.  
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As this brief description shows, all four-stroke engines present similarities, despite the type 
of fuel (gasoline or diesel) they combust, that can be exploited in order to define a general 
model of the type of systems required to control them. Interested readers can find further 
details about how vehicle engines work in [Pulkrabek 1997].  

4.2.2. Engine Control System Model 

According to the general view of a four-stroke engine provided in the previous section, our 
goal here is to identify the main characteristics of the systems controlling these engines. 
These characteristics conforms the general model on which the specification of our 
dependability benchmark is based (see Figure 4-2). 

The notion of engine electronic control unit defined in the introduction of this chapter refers 
to the compound formed by the engine control application and the software and hardware 
supporting its execution. Typically, engine control applications run on top of a real-time 
operating system support and a microcontroller- or DSP1-based hardware platform [Miller et 
al. 1998]. As Figure 4-2 shows, these applications can be modelled as a set of control loops 
handling two types of input data: (i) the acceleration/deceleration data provided by the driver 
through the throttle, and (ii) the feedback data supplied by the set of sensors connected to the 
car engine. The first type of data is external to the engine and it defines the speed reference 
imposed by the vehicle driver. The second one is internal and it is used in order to monitor 
what is currently happening inside the vehicle engine.  

 

Figure 4-2. Model for an engine control system 

                                                 

1 The acronym DSP stands for Digital Signal Processor. 
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The core of the engine control application can be characterized through four different control 
loops. On the one hand, the angle and the timing loops determine when the fuel injection 
must occur and how long it must be. On the other hand, the volume and the flow shape 
control loops manage the quantity of air and the way that air enters the cylinder. These four 
control loops are the ones that any (gasoline or diesel) engine control system should 
implement. However, one should notice that, due to their specific characteristics, each engine 
family also implements other specific control loops. Examples are, for instance, the EGR2 
control loop of diesel engines and, the spark control loop of gasoline engines. It is worth 
noting that this also happens among engines of the same family.  

It is important to notice that engine control loops are typically designed to provide robust 
control. Although similar to fault tolerance, the notion of robust control only refers to the 
ability of a control algorithm to absorb perturbations in its inputs in order to compute correct 
outputs. In the automotive domain, this robustness is obtained by (i) applying filters to the 
inputs in order to eliminate the eventual perturbations and (ii) using predictive techniques 
that compute outputs based not only in the current set of inputs, but also in the previous state 
of the system and the dynamics the engine is supposed to follow. In that way, the impact of 
an incorrect input over the computed outputs is minimized. However, the question persists: 
what happens if the effect of an incorrect input (or other type of external fault) propagates to 
the computed control outputs? To the best of our knowledge, engine control applications do 
not integrate specific mechanisms to recover from the effects of such type of failures. As a 
result, if the consequence of a fault is the computation of an improper control output, then 
this output will be applied to the engine as it is. This is the type of unsafe situation whose 
consequences are evaluated by our dependability benchmark. The best option among several 
candidates will be the one reducing the consequences and the ratio of occurrence of such 
unsafe situations. Since our purpose is not to define a benchmarking solution for a particular 
engine control system, our interest will focus all through this chapter only on the control 
loops that any automotive control application must provide, i.e. those depicted in Figure 4-2.  

4.3. Benchmark Specification 

Our dependability benchmark is built on top of the model defined in the section 4.2.2 . In this 
section we introduce the different components of our benchmark and we detail each 
component in a different section. 

4.3.1. Benchmark Overview 

In the first chapter of this book, we have identified the set of different dimensions of 
dependability benchmarks. In this section, these dimensions are instantiated to the functional 
context defined by automotive engine control applications.  

                                                 

2 EGR is the acronym of Exhaust Gas Recirculation, a technique used today in most Diesel engines in order to 
produce a better combustion of contaminants and ensure in that way a fewer emission of such containants to the 
atmosphere. 
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The general specification framework states that a dependability benchmark must clearly 
distinguish the system under benchmarking (SUB) from the benchmark target (BT). The 
former is the system on which the dependability benchmark experiments (BEs) are 
conducted. The latter is the benchmarking object, i.e. the system or system component which 
is intended to be characterized by the benchmark. In our context, the SUB corresponds to the 
system depicted in Figure 4-2, and the BT is the software running inside the engine ECU.  

The experimental dimension of our dependability benchmark is characterized by its input 
domain and its output domain.  

The input domain corresponds to the stimuli required to exercise the system under 
benchmarking (the workload) and the set of injected faults (the faultload). In our case, the 
workload corresponds to the speed reference supplied by the car driver through the throttle 
and the state feedback provided by the sensors connected to the engine. On the other hand, 
the faultload is defined as the set of transient hardware faults that the ECU memory could 
suffer during its normal operation [Gracia et al. 2002]. The aggregation of these components 
defines the execution profile of our benchmark.  

In general, the output domain is the set of observations (measurements) that are collected 
from the benchmark target during the experiments. These measurements are retrieved from 
the experiments following a so-called benchmark procedure. Their processing enables the 
computation of the benchmark dependability measures. As commented in section 4.2.2, 
engine control applications are designed to be robust to external perturbations that may affect 
their inputs but they do not integrate any specific mechanism to recover from such type of 
faults. This is why the measures our benchmark provides basically characterise the 
robustness of the ECU control algorithms with respect to the faults affecting their inputs. In 
case of the generation of an incorrect control output (a failure), these measures also reflects 
the ability of the ECU to limit the impact of such failure on its controlled engine. This latter 
issue is of great importance since, as next section explains, this impact may vary from the 
non-optimal behaviour of the engine to a situation in which the engine behaviour becomes 
unpredictable. Accordingly, the best control system will be the one providing a safer 
behaviour from the viewpoint of the controlled engine. 

Before closing this overview, we want to underline the fact that the high integration scales 
used in today’s electronic components is a major impairment for conducting benchmark 
experiments on the considered control applications. Although technical, this issue applies in 
general to any modern engine ECU and it has a deep impact on the definition of a suitable 
and realistic benchmark procedure for such kind of automotive systems.  

4.3.2. Dependability Measures 

As stated in the previous section, the dependability measures of this benchmark evaluate the 
safety of an engine control system. This evaluation is not performed on the basis of a single 
measure, but rather on the basis of a set of measures that estimates the impact of ECU control 
loop failures over the engine. 
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We consider that an engine ECU fails when it delivers incorrect control outputs or when it 
does not deliver any control output at all. Accordingly, one can identify five different failure 
modes for an engine ECU:  

1. The Engine ECU reset failure mode models the situation in which an error corrupts 
the internal registers of the engine control unit. Typically, this problem prevents the 
hardware platform to continue with the normal execution of the system and requires 
its reset. Hence, the ECU is not able to provide any control output during a certain 
amount of time (called the reset time). It is worth noting that this failure affects the 
service provided by the ECU, but it is independent from the computation performed 
by the engine control algorithms; 

2. The “no new data” is a value failure mode that represents the case in which the 
engine control software hangs without providing any new control output. It also 
models the case in which one or more control loops enter in a computation cycle 
providing, despite the reads of the sensors, the same control outputs; 

3. The “close to nominal” and “far from nominal” failure modes characterize failure 
situations in which the control application provides outputs with incorrect values. One 
should notice that engines are typically able to absorb certain levels of discrepancies 
between the expected control values (the nominal values) and the ones actually 
provided by the ECU control software. These discrepancies cannot be defined in 
general since they vary from one engine to another. Typically, discrepancies of more 
of the 30 % of the nominal value represent failures of type “far from nominal”. It is 
thus obvious that the calibration of this discrepancy has a direct impact in the 
benchmark results;  

4. The Missed deadline failure mode represents a temporal failure that occurs when a 
deadline is violated by the control algorithms. This means that the control output is 
provided out of the temporal bounds fixed by the system specification or it is not 
provided at all.  

In general, vehicle engines react to the different control failure modes defined above 
according to three different levels of criticality. The most critical level is the one in which the 
behaviour of the engine becomes unpredictable, i.e. we cannot determine the consequence of 
the control failure for the engine. This is why this situation is the most unsafe for both the 
engine and the vehicle passengers. The second level of criticality is noise and vibrations, in 
which the engine is noticeably not running according to its specification. Finally, the less 
critical impact is when the performance of the engine is non-optimal. Typically, this is not 
perceived by the vehicle passengers while driving, but it has a deep impact over the fuel 
consumption, the power delivered and the pollution generated by the engine. 

As Table 4-1 shows, the level of criticality of each control loop failure is different. The most 
critical failures, from the engine safety viewpoint, correspond to those affecting the control of 
the fuel injection process, and more precisely the moment at which the fuel is injected in the 
engine cylinder. In general, the engine behaviour becomes in that situation unpredictable. 
However, when the fuel injection angle control loop suffers a time failure or a temporal value 
of type close to nominal, the engine behaves in a non-optimal mode. The table also shows 
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that the reset of the engine ECU is critical. This is because this failure prevents the engine 
ECU control loops to perform their computation. Hence, during the reset time, the engine 
behaviour becomes unpredictable, since it is neither monitored nor controlled by the ECU. 
The rest of control failures lead the engine to produce noise and vibrations or to behave in a 
non-optimal mode.  

The reader should notice that the impact of these control failures over each engine depends 
on the tolerance of its mechanical components and the dynamics desired for each particular 
engine3. Thus, this impact varies from one engine to another.  

Table 4-1. Measures characterising the impact of ECU control failures over the engine 

  Engine ECU control outputs 

  Fuel injection Air management 

  Angle Timing Volume Flow shape 

Engine ECU reset  
(ECU internal registers corrupted) Unpredictable  

No new data Unpredictable  Non-optimal  Noise/Vibrations  Noise/Vibrations  

Close to nominal Non-optimal  Noise/Vibrations  Non-optimal  Non-optimal  
Value 

Failures 

Far from nominal Unpredictable  Non-optimal  Noise/Vibrations  Noise/Vibrations  

C
on

tr
ol

 fa
ilu

re
 m

od
es

 

Time Failure  
(Missed deadline) Non-optimal  Noise/Vibrations  Non-optimal  Non-optimal  

 
 
 

  The vehicle engine behaves in an unpredictable way (most unsafe situation); 
 

The vehicle engine works, but not properly: it produces some noise and/or vibrations; 
   

The vehicle engine behaviour works properly but its performance is not optimal (least unsafe situation)  

The safety measures that one can deduce from Table 4-1 correspond to the percentage of 
failures falling in each table cell. The goal of presenting these measures in a tabulated form is 
to improve their readability. We also recommend colouring the cells of the table according to 
their criticality level. In that way, all the information can be perceived at a single glance.  

4.3.3. Execution Profile 

The computation of the benchmark measures specified in Table 4-1 requires the activation of 
the engine ECU with a particular execution profile. This profile has two main components: 
the workload and the faultload. The workload defines the type of stimuli needed for 
activating the engine ECU software during the benchmark experiments. The faultload 
characterize the faults that may perturb the normal execution of this software. The main 
challenge here is to define these benchmark components in a representative way, i.e. 

                                                 

3 It must be noted that the use of electronic units enable engines dynamics to be customised according to the 
needs. In other words, the calibration of the engine dynamics is performed by tuning the internal parameters 
handled by the engine control algorithms. This is, for instance, what happens today when different models of 
the same vehicle, integrating the same engine, supply different horsepower indexes. 
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according to the set of conditions that drive the execution of engine control applications in 
the real world. 

4.3.3.1. Workload 

Despite what happens in other benchmarks, the workload needed for exercising the control 
software of an engine ECU cannot be simply defined in terms of a set of programs. As Figure 
4-2 showed, engine control applications execute according to two types of information. The 
former corresponds to the speed reference the driver imposes to the engine through the 
throttle. The latter is defined by the set of engine internal variables that the ECU monitors in 
order to feedback its control computation. 

Throttle Inputs 

Defining the throttle inputs consist in modelling different ways of driving. For our purposes, 
we propose the use of the following driving cycles: the acceleration-deceleration driving 
cycle, the urban driving cycle and the extra-urban driving cycle. All these cycles are 
expressed in terms of engine speed, i.e., in revolutions per minute, rpm for short.  

In the acceleration-deceleration driving cycle the throttle is repeatedly pushed and released 
trying to test all possible regulation conditions of the engine system. At the beginning of the 
cycle, the engine is idle and it is progressively accelerated, without putting any gear, by 
pushing the throttle from 0% to 100%. Then, the throttle remains pushed at 100% until the 
engine reaches a speed of the 80% of the maximum engine rpm. The throttle is then 
progressively released from 100% to 0% and it is maintained completely released until the 
engine becomes idle once again. Then, the cycle can be repeated again.  

 

Figure 4-3. Urban and Extra-urban driving cycles 

The urban and extra-urban driving cycles are standard cycles specified for emission 
certification of light duty vehicles in Europe [EEC Directive 90/C81/01 1999]. Figure 4-3 
depicts their main features. As we can see, the standard reasons in terms of vehicle speed, i.e. 
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in kilometres per hour (km/h for short). In order to transform this speed into engine speed 
(expressed in rpm), one must use the mathematical relation presented in Figure 4-4. 
Conversion from vehicle to engine speeds requires the knowledge of the speed reduction 
factors applied by the transmission for each gear, the differential and the radius of the vehicle 
wheels. This information must be supplied by the benchmark user, since it varies from one 
engine to another.  

 

Figure 4-4. Parameters for converting the Engine speed (rpm) to Vehicle speed (km/h)  

The reader must understand that for the purposes of benchmarking what is important is not to 
apply all the driving cycles described above each time the engine ECU is benchmark, but to 
apply only those of them that makes more sense according to the benchmark user purposes. It 
must be also noticed that the results obtained when considering different driving cycles are 
not comparable among them.  

Engine Internal Variables 

Although the benchmark experiments can be carried out using a real engine, it is evident that 
this solution is not suitable due to economical and safety reasons. This is easy to understand 
if one considers how unsafe can be the consequences of an engine ECU control failure (see 
Table 4-1). 

In order to avoid the damage of the engine during the experiments, we propose to replace the 
real engine by a model. This model could have a mathematical or an empirical nature. From a 
practical viewpoint, a mathematical model is only a good choice if it is available and ready to 
use at the moment of running the benchmark experiments. If this is not the case, it seems 
more reasonable to use an empirical model. This model can be easily defined, for instance, by 
tracing the activity of the real engine while running under the working conditions imposed by 
the throttle.  

4.3.3.2. Faultload 

In general, benchmarking a system component prevents faults to be injected into this 
component. In other words, the faultload can only affect the execution environment of the 
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benchmark target, but not the benchmark target itself. Our target is the software running 
inside the engine ECU. Consequently, faults cannot be introduced in this software; but in the 
hardware supporting its execution.  

Recent studies [Gil et al. 2002] point out that the likelihood of apparition of hardware 
transient faults is increasing in integrated circuits (ICs). These results can be also applied to 
electronic control units, since their manufacturing greatly benefits from improvements of 
integration scales in IC technologies. Moreover, some fault types that usually have been 
neglected for such type of systems will have an important impact. This is the case of faults in 
combinational logic (pulse fault model). At higher working frequencies, the likelihood to 
latch a combinational fault is going to rise considerably. Other unconsidered fault models like 
delay and indeterminism are going to increase their influence also due to problems related to 
high speed working. At high frequencies, skin and Miller effects will make that delay in ICs 
will not be constant, originating even time violations that can lead to indeterminate outputs. 
[Gracia et al. 2002] have shown that a basic approach towards the consideration of the above 
fault models is the bit-flip fault model. In addition, the bit-flip fault model is largely accepted 
by the dependability community for modelling hardware transient faults.  

The faultload we propose is defined as the set of hardware transient faults emulated by bit-
flips that will affect the engine ECU memory during its normal use. The reason guiding this 
choice is two-fold. As motivated above, the high scales of integration used for manufacturing 
modern engine ECUs make such electronic components very sensitive to the interferences 
produced by the different types of radiations existing in the environment. On the other hand, 
faults impacting the ECU internal memory are those with a bigger influence on the service 
supplied by engine ECUs. This is easy to understand if we notice that this memory holds the 
code and the data of both the operating system and the engine control software. In addition, 
all the sensors/actuators physically connected to the ECU store/retrieve their data to/from 
specific locations of this memory. Figure 4-6 provides a detailed view of the relationships 
existing between the different elements (sensors, actuators) connected to engine ECUs, the 
components (memory, processors, A/D and D/A converters) integrated in such type control 
units and the different interfaces ECUs must provide for enabling the execution of the 
benchmark. Among these interfaces, the faultload interface is the one through which bit-flips 
are injected in the ECU memory during the experimentation phase. The description of this 
interface and the proposed fault-injection methodology are part of the benchmark procedure 
specification.  

4.3.4. Benchmark Procedure  

For a given engine control application, the dependability measures defined in Table 4-1 are 
deduced from measurements computed by comparing its behaviour in absence of faults 
(golden run) with its one in presence of faults. In all the benchmark experiments, the same 
initial SUB configuration is required. From one experiment to another, the difference relies 
on the definition of the experiment execution profile, and more precisely on the fault selected 
from the faultload.  
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4.3.4.1. Experimental Setup components 

Figure 4-5 identifies the main components of the experimental setup required for running the 
benchmark experiments. This setup is built according to the model depicted in Figure 4-2. 
Within a single experiment, the experiment manager coordinates the activity of all the setup 
entities. It also sequences the execution of successive benchmark experiments.  

 

Figure 4-5. Experimental setup components 

The workload and faultload controllers are those entities devoted to the activation of the SUB 
according to the execution profile defined for each experiment. In order to do that, they use 
two different interfaces: the workload interface and the faultload interface. The former is 
defined in terms of the sensors that feed the control algorithms of the engine ECU. The latter 
is the interface through which the faultload is applied to the target system. It must be noted 
that the definition of this second interface is not as evident as the definition of the workload 
interface. Further insights on that issue are provided in section 4.3.4.2. 

The observation interface is used by the SUB monitor in order to obtain traces reflecting the 
target activity. We name these observations the benchmark measurements. These 
measurements are those from which the dependability measures specified in Table 4-1 are 
later deduced. The place where the SUB monitor stores the benchmark measurements is 
called the experiment repository.  

The reader must notice that the view of the experimental setup provided here is conceptual, 
i.e. the different entities depicted in Figure 4-5 can be mapped to a single entity or a set of 
different entities in the implementation. The experiment repository, for instance, can be 
implemented, despite its role in the experimental setup, as either a database or a file 
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directory. These practical issues are however out of the scope of this specification and they 
will be commented in the prototype section of this chapter. 

4.3.4.2. Experimental approach 

The experiments with an execution profile containing one fault are carried out in three 
successive phases. In the first one, the experiment manager initialises the system under 
benchmarking, which is led to the initial conditions of the experiment. Then, it asks to the 
setup controllers to run the execution profile. Finally, it supervises the activity of the SUB 
monitor, which stores in the experiment repository the information retrieved form the target 
internal activity. Golden runs are experiments with a simpler benchmark procedure that 
consists in running execution profiles with and empty faultload. 

Phase 1: SUB Initialization 

First, the target application is reset. Then, an initial start-up time must be devoted to the 
initialization of the system under benchmarking. During this time, the engine control 
software and the operating system are loaded in memory and its execution is lead to a “ready 
to control” state. From a mechanical viewpoint, this initialization phase enables the engine to 
be started in order to warm-up and reach the required initial speed. According to initial 
conditions of our workload (see section 4.3.3.1), the initial speed that we need is of 800 rpm, 
i.e. the engine is idle at the beginning of the benchmark experiments. The internal 
temperature of the engine should be the one that the manufacturer considers as “normal” for 
his engine.  

The injection of faults during the experiments is triggered through a timer that must be 
programmed during this initialization phase. Although the fault injection time can be shorter 
than the experiment start-up time, this situation is only of interest when studying the start-up 
of the system in presence of faults, which is not our case. We consider that the fault injection 
time is always longer than the start-up time of the system under benchmarking  
(see Figure 4-8).  

Phase 2: Execution profile running 

As Figure 4-6 shows, running the workload consists in feeding the sensors connected to the 
engine ECU with the adequate inputs. These inputs are those associated to the selected 
driving cycle and the feedback supplied by the engine. As discussed during the definition of 
the workload, both the throttle and the engine can be either real components or models. In 
this latter case, it must be noted that the sensor data is always digitalized before being stored 
in a set of predefined memory locations. This issue can be exploited in order to write the 
sensors readings directly to these locations from another computer system (the workload 
controller). This is a technical issue that can simplify the design of the benchmark setup since 
it is not necessary to produce analogical signals for feeding the sensors if we are using neither 
real throttles nor real engines.  
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Figure 4-6. Role of the benchmarking interfaces in the experiments 

On the other hand, executing the faultload means injecting faults in the normal execution of 
the engine ECU. In our case, only one fault is injected per experiment. However, flipping bits 
in the memory of the engine ECU is more problematic that it may seem at a single glance. 
Ideally, the fault injection procedure should not interfere with the normal execution of the 
engine control software. In order to cope with that goal, this procedure must be defined 
taking into account that: (i) the benchmark target has a real-time behaviour that should not be 
perturbed during the fault injection process, and (ii) if a real engine is used for the 
experiments, then its dynamics prevents the execution of the ECU software to be stopped. 
These issues are general and they concern all modern engine ECUs. Basically, a faultload 
interface suitable for our purposes must provide on-the-fly read/write memory access 
features. Using these features, the ECU memory content can be accessed and manipulated at 
runtime minimizing the level of intrusion and without stopping the normal execution of the 
system. It is worth noting that on-the-fly memory access are nowadays more and more 
present in automotive systems where this feature is exploited for calibration purposes.  

 

Figure 4-7. Using the faultload interface features for flipping bits in the ECU memory 
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Figure 4-7 describes how the on-the-fly memory access features of the faultload interface 
must be used in order to provoke the flip of a certain number of bits in a particular ECU 
memory position. First, the memory position content is read (by the faultload controller). 
This controller defines a mask where the bit (or set of bits) to be changed are set to the 
logical value 1, the rest becomes 0. In the case of a single bit-flip only one bit of the mask is 
set to 1; in case of a multiple bit-flip several bits in the mask take that logical value. The 
particular bit (or set of bits) to be set can be predefined or chosen randomly. Once the mask 
defined, it is applied on the memory content retrieved in step 1. The logical operation used is 
an XOR. Finally, the resulting word is written back to the memory, which concludes the fault 
injection process. The moment at which this fault injection process is triggered (the fault 
injection time) is randomly selected within the duration of a benchmark experiment. As stated 
before, this time must be greater than the SUB initialization time. It is important to notice that 
the memory position where the fault is injected to can be selected randomly or predefined by 
the benchmark performed. More details about this issue will be provided in Section 4.4.2.2.  

 

Figure 4-8. Detailed view of the benchmark conduct  

If all works fine, the sequence of events depicted in Figure 4-8 must internally occur in the 
benchmark target. Once one fault is injected in the memory of the engine ECU, it remains 
dormant until the application exercises the location where it is stored. At this moment (notion 
of fault activation time), the fault is activated and it becomes an error. Then, this error can be 
detected or not. If it is the case, then the error recovery mechanisms execute and two new 
measurements can be defined: (i) the error detection latency, which is the difference between 
the error detection time and the fault activation time; and (ii) the recovery time, which can be 
defined as the execution time of the system error recovery mechanisms. If an error remains 
undetected, the activity of the target application must be monitored during the defined 
observation time. In our particular case, this time must be greater than the time required for 
running each loop of the engine control software. The observation of these events let to 
determine whether an error has been detected or not and, in case of error detection, the type 
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of the detected error. This issue is essential in order to determine when the engine ECU will 
be reset. As stated in section 4.3.2, only certain error leads the ECU to reset. Most of times, 
this reset only affects the ECU internal hardware and it cannot be perceived from outside of 
this unit without being intrusive. If the error finally affects the outputs computed by the 
engine control algorithms, then a failure raises in the system.  

Phase 3: Retrieving measurements from the benchmark target 

This phase executes in parallel with phase 2. It starts once the system under benchmarking is 
running the execution profile.  

Through the observation interface, the SUB monitor should have access to the control outputs 
computed by the ECU internal algorithms. These outputs can be captured internally (by 
reading their associated memory position) or externally (by reading the analogical signals 
produced by the digital-analogical converters of the ECU). It is worth noting that this second 
option requires the analogical signals produced by the ECU to be converted to digital signals 
by the SUB monitor. In addition, this solution is only viable when every computed control 
signal is externalized by the engine ECU. If this is not the case, then control outputs must be 
captured internally which requires the engine ECU to provide on-the-fly read memory access 
facilities in order to minimize the level of intrusion in the target system.  

Due to the real-time nature of the application under benchmarking, being able to obtain the 
instant of occurrence of a failure is also very important. This temporal information is required 
for deducing whether a deadline is missed or not. In order to understand how missing 
deadlines are detected, the reader should understand that in our context, each control loop 
running inside the engine ECU is executed cyclically with a given frequency. The inverse of 
this frequency, typically expressed in milliseconds, is the computation period of each control 
loop. This period represents the amount of time each control loop has to compute new control 
outputs according to the current set of inputs. If this computation exceeds this amount of 
time, then the control loop violates its deadline, i.e. the control output is not supplied within 
the bound of the computation period. In order to detect such situations, it is essential to 
accurately know the times at which the engine control loops start, finish, resume and stop 
their execution. 

The reader should notice that the internal information depicted in Figure 4-8 is also of great 
interest from a validation viewpoint. One should not forget that once implemented the 
behaviour of each benchmark prototype must be always verified according to its 
specification. This issue has an extreme importance for placing a justified confidence on a 
particular implementation of the prototype and, by extension, on the dependability measures 
it provides. One of the objectives of this validation phase must be to check that the 
benchmark procedure is correctly conducted by the experiment manager. We want to 
underline that the interest of these measurements is not only limited to the validation of a 
particular implementation of our benchmark specification. The dependability measures that 
can be deduced from them, such as error detection latencies and error coverage, can be 
exploited for guiding the eventual design decisions that each engine ECU developer may 
adopt in order to improve the dependability measures of their implementations. These tuning 
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decisions may be oriented, for instance, to the reduction of error detection latencies or to the 
improvement of error detection coverage.  

As Figure 4-6 shows, retrieving all the observations defined here requires the SUB to provide 
interfaces with features for (i) for tracing the internal activity of the engine control 
application and (ii) for handling the ECU memory contents on-the-fly. It must be noted that 
these mechanisms refer to features existing in (most sophisticated) today’s debugging 
standards for automotive embedded systems. This is why their existence is, from our 
viewpoint, an acceptable requirement for the considered SUB. The benchmark prototype 
section illustrates how to use one of these debugging interfaces, the one standardised as 
IEEE-ISTO 5001 [IEEE-ISTO 5001™ 1999], in order to cope with the observation 
requirements described here. 

4.4. Benchmark Prototype 

The prototype implementation presented here shows the feasibility of the dependability 
benchmark specified in the previous section. This prototype enables the comparison of 
different SoC-based diesel engine ECUs. In addition, it illustrates how the in-built debugging 
features of a SoC-based ECU can be exploited to facilitate the implementation of the 
experimental procedure imposed by the benchmark.  

Section 4.4.1 introduces the functional specification of the considered diesel engine ECUs. 
Then, Section 4.4.2 describes the benchmark prototype in detail. Finally, Section 4.4.3 
estimates the effort and cost required for its implementation. 

 

Figure 4-9. View of the case study Diesel Engine ECU 

4.4.1. Specification of the case study DBT  

Figure 4-9 provides a view of the type of diesel engine ECUs that we consider. These ECUs 
work in three successive phases: 

1. The ECU gets from the sensors six different types of information: (1) the pressure of 
the air in the engine intake; (2) the pressure of the fuel in the engine common rail; (3 
and 4) the current angle of the crankshaft and the camshaft (see these components in 
Figure 4-1); (5) the current position of the throttle, which defines the engine speed 
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reference, and (6) the current speed deployed by the engine, which is expressed in 
rpm. These analogical values are then digitalized and stored in the internal memory 
of the ECU (as shown in Figure 4-6). 

2. According to the sensor readings, the ECU control loops computes: (i) the new 
pressure in the common rail, which impacts the diesel injection timing; (ii) the 
outputs required for controlling the swirl and waste gate valves that respectively 
regulates the are shape flow and volume injected in the engine; and (iii) the duration 
and the angle of the fuel injection, which are control outputs directly applied on the 
engine diesel injectors. These control loops are executed cyclically with the 
following frequency: the fuel timing control loop executes each 20 milliseconds, the 
fuel angle loop each 50 milliseconds, the air flow shape loop each 20 milliseconds 
and the air volume loop each 500 milliseconds. Figure 4-9 details the set of inputs 
that each one of these control loops requires and the set of outputs it generates.  

3. Once computed, the control outputs are stored in specific memory locations 
monitored by a set of D/A converters. These converters are those providing to the 
actuators the analogical signals they need for regulating the engine behaviour. 

4.4.2. Prototype description 

Figure 4-10 provides a general view of the prototype benchmarking platform. An Athlon XP 
2600 PC manage the execution of the experiments. The considered diesel ECUs run in a 
microcontroller-based MPC565 evaluation board. The MPC565 microcontroller embeds a 
built-in debugging circuitry offering a standard debugging interface, formally named IEEE-
ISTO 5001 but typically called Nexus. The board provides a port to which a Nexus emulator 
can be connected. In our case, this emulator is commercial and it is distributed by Lauterbach 
GmbH. The PC manages the Nexus interface of the microcontroller by means of this 
emulator.  

 

Figure 4-10. Experimental setup 
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The following sections detail the different elements of the prototype from the perspective of a 
reader interested in implementing the benchmark specified in the previous section. 

4.4.2.1. Workload Implementation 

The prototype is designed in order to admit synthetic workloads. These workloads are 
defined using engine and throttle models.  

The definition of engine models are supported by the tracing tool showed in Figure 4-11. 
Basically, this tool is able to monitor the behaviour of any diesel engine providing the sensor 
data defined in Figure 4-9. The values showed in Figure 4-11 are, for instance, those supplied 
by the dynamics of a PSA DW12 engine, an engine with common rail direct diesel injection, 
also known as HDI, when exercised using the acceleration-deceleration driving cycle. The 
information monitored by the tool is stored in tables that are also allocated in the memory of 
the ECU. These tables play the role of the memory locations where the analogue-digital 
converters store the data coming from the sensors connected to the diesel engine (see Figure 
4-6). In that way, the ECU is not aware about the absence of the real engine during the 
experiments.  

 

Figure 4-11. Diesel engine modelling tool 

The same approach is used in order to replace the real throttle with a model of its behaviour. 
In this latter case, throttle models are directly deduced from the specification of the driving 
cycles introduced in section 4.3.3.1.  
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4.4.2.2. Faultload Specification Tool 

In order to support the definition of the faultload, the benchmark prototype provides the tool 
depicted in Figure 4-12. Basically, it is a graphic tool that aims at the specification of (i) the 
total number of faults to be injected (one per experiment), (ii) the observation time and (iii) 
the set of memory locations where the faultload is applied to.  

Each memory location corresponds to the set of bytes associated to each symbol of the 
program. This symbolic information is generated by the compiler when building the 
executable file of the engine ECU control. In Figure 4-12, the supplied file is called 
ECU.map. For the sake of clarity, the benchmark user can customize the view of the program 
symbols. Three possibilities are offered. In the sort by sections view, symbols are sorted 
according to the memory segment name in which they are allocated. In the sort by file source 
view, they are grouped according to the file in the source code in which they are defined. In 
the sort by type view, symbols are shown according to the type of memory segment (code, 
read-only data and read/write data) in which they are allocated. Once a view selected, the 
benchmark user can select one, several or all the memory locations showed by the tool. It is 
also possible to ponder the importance of each memory location for the fault injection 
selection process. 

 

Figure 4-12. Faultload specification tool 

The button Proceed launches the generation of the faultload. By default, faults are randomly 
distributed in memory following a uniform probability distribution.  
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4.4.2.3. Benchmark Procedure Implementation 

Nexus is the corner stone of the implementation of our benchmark procedure. First, Nexus is 
a debug and calibration standard for real-time embedded systems. Second, the inspection and 
control features offered by this standard match the requirements identified in the section 
4.3.4.2. And third, Nexus is defined in a processor independent way. Thus, solutions built on 
it can be easily ported and applied to any embedded platform supporting the interface.  

In our case, the capabilities of Nexus are exploited in order to inject faults in the memory of 
the ECU while minimizing the interference with its execution. According to Figure 4-5, the 
faultload interface of our prototype corresponds to the compound formed by the Nexus 
emulator, the evaluation board and the MPC565 microcontroller built-in Nexus debugging 
circuitry. First, a timer is programmed with the fault injection time at the beginning of each 
benchmark experiment. When the timer expires, a signal is sent, by the Nexus circuitry of the 
MPC565, to the PC through the Nexus emulator. The on-the-fly memory facilities of Nexus 
enable the PC to read, without stopping the execution of the ECU software, the contents of 
the memory position where the fault must be injected. Next, it flips the selected bit and 
finally it writes back the corrupted contents. The limitation of this approach is that it cannot 
guarantee that, in all the cases, the steps described before are executed without a 
simultaneous access of the ECU software to the considered memory location. In other words, 
we cannot ensure that the memory location contains the injected fault just after the execution 
of the fault injection process. We solve this problem by not considering for the computation 
of the benchmark measures those experiments where this situation happens. 

In addition, the Nexus circuitry can generate, when programmed adequately, messages that 
inform the emulator about the data and code memory locations accessed by the ECU software 
during its execution. These tracing capabilities together with the ones providing on-the-fly 
read access to the engine ECU memory defines the observation interface of our prototype. 
The reader must notice that the amount of trace memory of the emulator is limited (in our 
case to 16 mega-messages). This can become a limitation for the duration of the experiment 
in case of very long workloads, which is not the case in the driving cycles proposed here.  

The interested reader can find in [Yuste et al. 2003a; Yuste et al. 2003b; Yuste et al. 2003c] 
more details about how to use the Nexus debugging capacities for fault injection and 
observation purposes.  

4.4.2.4. From Experimental Measurements to Dependability Measures  

Deducing the dependability measures from the measurements resulting from the experiments 
is far from being trivial. First, the trace files of these experiments are difficult to handle due 
to their sizes. In our case, the size of some files exceeds 1 gigabyte. Second, the information 
stored in each file is a dump of the emulator tracing message memory. Thus, the format of 
this raw information is not directly exploitable for our benchmarking (comparison) purposes.  

Figure 4-13 depicts the three-step process our data analyser follows in order to deduce the 
expected dependability measures from the measurements retrieved by the SUB monitor. 
These measurements are located in the experiment repository, in our case, a file directory. 
First, the measurements of each experiment are classified according to the type of probe 
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through which they have been obtained. Then, this probe-oriented representation is compared 
to another one deduced from the golden run. This comparison enables the identification of the 
relevant events happened during each the experiment. Once this event-oriented representation 
computed for all the experiments, the general measures defined in Table 4-1 are deduced. It is 
worth noting that, in addition to these general measures, the analysis tool also provides some 
specific measures regarding error latencies, error coverage and error distribution. As 
commented in section 4.3.4.2, these specific measures can be exploited with validation and 
tuning purposes. 

 

Figure 4-13. Experimental data analysis: From measurements to measures 

4.4.3. Benchmark experiments 

The following sections describe the configuration considered for the experiments carried out 
with our benchmark prototype. Then, we present and reason about the results obtained from 
those experiments. 

Benchmark targets 

Two different versions of the Diesel ECU (DECU for short) described in section 4.4.1 are 
considered in our experiments: 

1. The first version runs on top of a real time operating system, called µC/OS-II 
[Labrosse 2002]. In the rest of this chapter, this DECU will be referred as DECU with 
RTOS. Each control loop of this DECU is implemented as a different operating 
system task, the activity of each task is synchronized with the rest by means of 
semaphores and wait system calls. On the other hand, the operating system is 
configured in order to schedule the execution of the tasks following a rate-monotonic 
policy. 
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2. The second version of our case study DECU is directly implemented on top of the 
MPC565 microcontroller, so no operating system is available in that case. We will 
name this second DECU as DECU without RTOS. In its implementation, each control 
loop is deployed in a different program procedure and the main program schedules the 
execution of each procedure using a scheduling policy computed off-line.  

Execution Profile  

For the experimentation purposes, both the urban and extra-urban driving cycles has been 
considered as workload. The throttle model for these cycles was deduced taking into account 
the acceleration/deceleration information provided in Figure 4-3 and the dynamics imposed 
by the considered engine, which was a PSA DW12 engine. The model of this engine was 
obtained from measures performed using our engine modelling tool (see  Figure 4-11). 

As far as the faultload is concerned, transient hardware faults has been randomly injected in 
the memory of the ECU engine using a single bit flip fault model. These faults are selected 
using our faultload specification tool (see Figure 4-12) and the procedure followed for their 
injection was the one described in section 4.4.2.3.  

Results 

We have devoted one working week (5 days) to the execution of the benchmark experiments. 
During this time, 600 experiments were carried out: 300 with each driving cycle. 200 seconds 
were required for running each urban driving experiment, while the double (400 seconds) 
was required for the extra-urban experiments. The analysis of the raw day obtained from the 
experiments, although automatically performed, took 16 hours. All the process was 
automatically performed. The results included in Table 4-2 and Table 4-3 show the measures 
obtained from these experiments.  

Under urban conditions, the DECU without RTOS is definitively better than the version 
integrating the operating system. First, the DECU with RTOS doubles the failure ratio of the 
version without RTOS. Second, the percentage of unpredictable failures that the former 
DECU has shown is 4 times greater than the one showed by the latter DECU. Following the 
same tendency, the percentages of noise and vibrations and non-optimal failure modes are 
twice in the DECU with RTOS than in the without operating system. These results do not 
leave any doubt about which is the most suitable DECU version for engines used in urban 
conditions. This DECU is the one without RTOS. 

Under extra-urban driving conditions, both DECUs have shown similar failure ratios. The 
study of the failure distribution has shown that, in the case of the DECU version with RTOS, 
most of the failures (the ratio is 2.78 %) have an unpredictable impact over the engine. In the 
case of the DECU without RTOS, this ratio is of 1.28 %. However, the ratio of failures 
producing noise and vibrations is of 1.60 %, while it is null in the case of the version with 
operating system. As far as the engine non-optimal behaviour is concerned, both ECUs have 
shown similar failure ratios. The conclusion is that the DECU without RTOS is also better for 
driving under extra-urban driving conditions. In that case, this does not mean that it has a 
lower failure ratio than the version with RTOS, it means that the failures are distributed in 
such a way that their impact is more safe from the viewpoint of the considered engine. 
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Table 4-2. Results obtained using the Urban Driving Cycle as workload 

Diesel ECU with RTOS 

Fuel injection Air management Number of DBEs: 300 
Failure ratio: 5,76% 

Angle Timing Volume Flow shape 

Engine ECU reset 
(ECU internal registers corrupted) 

1,15% 
 

No new data 0,2% 
 

0,77% 
 

0,57% 
 

0% 
 

Close to nominal 0,38% 
 

1,53% 
 

0% 
 

0% 
 

Value 
Failures 

Far from nominal 0% 
 

0,38% 
 

0% 
 

0,38% 
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Time Failure 
(Missed deadline) 0% 

 
0% 

 
0% 

 
0,4% 

 

 
 

    Engine Behaviour:  unpredictable behaviour   (most critical) 
noise & vibrations   
non-optimal  (less critical) 

 
 

Diesel ECU without RTOS 

Fuel injection Air management Number of DBEs: 300 
Failure ratio: 2,38% 

Angle Timing Volume Flow shape 

Engine ECU reset 
(ECU internal registers corrupted) 

0,34%  
 

No new data 0% 
 

0% 
 

0% 
 

0% 
 

Close to nominal 0% 
 

0,34% 
 

0% 
 

0% 
 

Value 
Failures 

Far from nominal 0% 
 

0,68% 
 

0,68% 
 

0% 
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Time Failure 
(Missed deadline) 0% 

 
0,34% 

 
0% 

 
0% 

 

  

4.4.4. Implementation Cost and Effort  

The economical cost related to the hardware depicted in Figure 4-10 was of 18000 €. The 
time required for developing our prototype was of 120 man working days (6 man working 
months). Basically, ten man working days has been spent in the development of the tools 
showed in Figure 4-11 and Figure 4-12; fifty more days in order to implement the benchmark 
procedure using the MPC565 Nexus capabilities; and finally, the automation of the result 
analysis process has required an additional effort of 60 man working days. It must be noted 
that this effort estimation includes both the time required for understanding the specification 
and the time devoted to get skills in the programming of the selected hardware target 
platform. Our experience shows that programming languages selected for the implementation 
of the benchmark must be, if possible, function of the programming skills of the developer. 
Otherwise, if the programming languages are imposed, for instance due to the enterprise 
practices, then an additional effort must be included to this temporal estimation. 
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We have also estimated the amount of time required for sequentially running 3000 
experiments with each (urban and extra-urban) driving cycle on the considered targets. The 
time needed such experiments is of one working month and a half in total. Although this time 
can be significantly reduced when running the experiments in parallel, this increases the 
economical investment to be performed on the benchmarking platform. Other solution is to 
reduce the number of experiments, bounding the experimental time to one working week. 
This is what we have made in the experiments that we have performed. However, one must 
take into account the impact that this reduction in the number of experiments may have in the 
accuracy of the measures finally obtained. This interesting issue is a subject for future 
research. 

Table 4-3. Results obtained using the Extra-Urban Driving Cycle as workload 

DECU with RTOS 

Fuel injection Air management Number of DBEs: 300 
Failure ratio: 5,1% 

Angle Timing Volume Flow shape 

Engine ECU reset 
(ECU internal registers corrupted) 

0,68% 
 

No new data 0% 
 

0,34% 
 

0% 
 

0% 
 

Close to nominal 0% 
 

0% 
 

0% 
 

0% 
 

Value 
Failures 

Far from nominal 2,04% 
 

2,04% 
 

0% 
 

0% 
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Time Failure 
(Missed deadline) 0% 

 
0% 

 
0% 

 
0% 

 

 
 

    Engine Behaviour:  unpredictable behaviour   (most critical) 
noise & vibrations   
non-optimal  (less critical) 
 

 
 

DECU without RTOS 

Fuel injection Air management Number of DBEs: 300 
Failure ratio: 5,76% 

Angle Timing Volume Flow shape 

Engine ECU reset 
(ECU internal registers corrupted) 

0% 
 

No new data 0,32% 
 

1,6% 
 

0% 
 

0% 
 

Close to nominal 0% 
 

1,28% 
 

0% 
 

0% 
 

Value 
Failures 

Far from nominal 0,96% 
 

1,28% 
 

0 
 

0,32% 
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Time Failure 
(Missed deadline) 0% 

 
0% 

 
0% 

 
0% 
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4.5. Benchmark Properties and Their Validation 

This section focuses on the verification of five properties of our dependability benchmark: its 
portability, its non-intrusiveness, its scalability, the repeatability of the experiments and the 
representativeness of the dependability measures they provide. 

4.5.1. Portability 

The portability of a benchmark specification is the property that refers to its ability to apply 
to different benchmark targets. Our specification builds on a general engine model that 
abstracts from the specificities associated to a particular type of engine. Thus, the control 
loops included in this model are those at the core of diesel and gasoline engine ECUs. From 
that viewpoint, the specification is applicable to both types of engines. However, one should 
not forget that each type of engine may have specific control features that have not been 
considered in our benchmark. In order to study the dependability of these control loops, the 
approach needs to be extended. This extension restricts the portability of the specification to 
engines of the same type – if we consider, for instance, specific diesel or gasoline control 
features, like the exhaust gas recirculation or the spark control loops. The same applies if we 
consider control features of a particular (diesel or gasoline) engine model.  

From the viewpoint of the deployed prototype, its implementation can be plugged on any 
engine ECU providing a Nexus debugging interface. The only requirement is that the 
interface must be Nexus class 3 compliant. This issue has not been underlined before because 
it only influences the portability of the benchmark prototype. The fact is that engine ECUs 
with Nexus interfaces of classes 1 and 2 do supply neither on-the-fly memory access nor 
memory tracing messages facilities. Since these are the features sustaining the execution of 
our prototype, it cannot be ported to those SoC engine ECUs not providing Nexus class 3 
compliant ports. This is the only impairment to the portability of our benchmark prototype. 

Our experiments show that, as far as the functional interface of benchmark target remains 
unchanged, different implementations of the same specification can be benchmarked using 
the same benchmark prototype. This is like in the operating systems domain, when one talks 
about POSIX and forgets the particular operating system (Windows or Linux) implementing 
this portable interface. When the interface of the benchmark target is modified (an 
input/output is added or removed from its specification), the prototype must be then changed 
in consequence. The experience shows that these (apparently naïf) changes are easy to take 
into account in the experimental procedure, but they deeply affect the analyzer of the 
experiment results. Hence, the software architecture of this analyzer must be designed open 
enough for enabling such kind of extensions. 

4.5.2. Non-intrusiveness 

As we have already underlined in other sections, the strong encapsulation imposed by the 
SoC technologies to the manufacturing of today’s engine ECUs makes difficult the 
benchmarking of the software running inside them without modifying the code of the SUB or 
affecting its temporal behaviour. 
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As commented in Section 4.3, we have chosen the solution of exploiting, with benchmarking 
purposes, the debugging features provided by most of today’s automotive ECUs. These 
features are those described in section 4.3.4. In order to asses the viability of the approach, 
we have developed a prototype, whose implementation rely on the class 3 Nexus debugging 
interfaces. According to its specification, the built-in circuitry embedded in this interface 
must ensure, by construction, an absence of temporal intrusion when (i) accessing the engine 
ECU memory contents on-the-fly, and (ii) tracing the activity deployed by ECU software. 
Since these features are also enough from an observation viewpoint, no code instrumentation 
is required in order to adapt the code of the ECU software to the purposes of our benchmark. 
Hence, no spatial intrusion is either required.  

This practical work has shown that our specification can be implemented in a non-intrusive 
way from either a spatial and temporal viewpoint. It must be noted that Nexus has been 
chosen due to its increasing popularity in the automotive embedded systems domain. 
However, it is important to underline that our benchmark specification does not rely on 
Nexus, only our prototype does. Hence, any other debugging interface providing the features 
identified in the specification can also be used.  

4.5.3. Scalability 

What affects the scalability of our benchmark specification is the consideration of additional 
control loops. In that case, the benchmark must be revisited in order to enrich its specification 
with the goal of covering also the characterisation of the new features related to these control 
loops. It is obvious that the benchmark prototypes meeting the old specification must be 
updated according to the new requirements identified in the resulting benchmark. This is an 
exercise that has been left for future research. 

4.5.4. Repeatability of the experiments 

Under identical initial conditions, and using the same execution profile, can be the results 
obtained from experimentation reproduced? This property must be guarantee in absence and 
in presence of faults. In this latter case, the property must be verified despite the occurrence 
of errors and failures. 

Basically, the idea is to run the same experiment several times in order to compare the 
resulting traces. In our experiments, two traces are said to be equal if they reflect the same 
ECU internal and external activity. The internal activity refers to the events depicted in 
Figure 4-8 and the external activity concerns the production of control outputs. This 
information is retried from the system using the tracing capabilities offered by the Nexus 
interface of the hardware platform. The goal is to check that the traced events are the same 
and they are ordered following the same temporal sequence. As far as a missed deadline 
failure does not occur, the exact time at which each event happens is not important for the 
verification of the repeatability property. The reader must notice at this point that the notion 
of statistical repeatability used by our partners does not apply in our case. This is mainly 
motivated by the fact that we do not consider in our benchmark the impact that faults have in 
the performance of the engine ECU, since this type of measures has no sense in our context. 
Thus, the measures computed by our benchmark do not admit variations from one experiment 
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to another, i.e. the set of events traced from one experiment must remain the same if the 
execution profile, the initial conditions and the target system remains the same.  

In the experiments, we have checked the repeatability of (i) the golden runs, (ii) the 
experiments with a faultload affecting an empty memory location, (iii) the experiments with a 
faultload impacting occupied code/data memory locations that are used by the engine ECU 
software. In this latter type of experiments, we differentiate those ones leading to an internal 
error not provoking the failure of the target system and those leading the target system to fail. 
These experiments have been very fruitful in the first stages of the benchmark prototype 
development in order to fix some bugs in the implementation. As far as our benchmark 
prototype matures, it is harder to identify discrepancies between experiments executed on the 
same target using the same execution profile and the same initial conditions. For instance, the 
experiments depicted in section 4.4.3 have been reproduced twice and no deviations have 
been appreciated in the resulting dependability measures. 

Further experiments are however required in order to check the difficulty of guaranteeing this 
level of repeatability when changing the hardware platform or when considering other 
benchmark targets. 

4.5.5. Representativeness 

The workload we have selected is representative for the automotive domain, as shows the fact 
that it is used a standard workload for emission certification of light duty vehicles in Europe. 
It is well-known that the combustion process of fuel inside the engine conditions the level of 
contaminants that vehicles emit to the atmosphere. Thus, our choice makes sense if the 
workload is applied to the part of the engine ECU responsible for handling this combustion 
process. As discussed in section 4.2.2, this is our case.  

Concerning the faultload, recent publications [Gil et al. 2002; Gracia et al. 2002] has pointed 
out the likelihood of apparition of hardware transient faults in integrated circuits will increase 
greatly. We have selected the bit-flip fault model for characterising such hardware transient 
faults because it provides, from our viewpoint a good compromise between (i) the type of 
models widely accepted by the dependability community for modelling such type of faults 
and (ii) the type of perturbations that can be injected in SoC electronic components used in 
today’s automotive systems.  

The question that for the time being remains open is the representativeness and the usefulness 
for the industrials of the dependability measures defined in our benchmark. This is an issue 
we plan to handle in a near future. 

4.6. Conclusions 

The omnipresence of COTS in the automotive software industry together with the increasing 
need of minimizing costs and time-to-market, justifies the interest of the benchmarking 
approach proposed in this chapter. This approach focuses on the study of the impact of 
engine control application failures over the most critical part of a vehicle: its engine.  
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The main contribution of this research is to (i) specify a set of dependability measures for 
comparing the dependability of fuel-based engine control systems and (ii) identify all the 
elements required for developing a benchmark prototype for obtaining those measures. The 
high scale of integration of today’s engine ECUs is, without any doubt, the most important 
technological impairment for the development of such type of benchmarks. On the one hand, 
one must solve the problems regarding the application of the faultload to the engine control 
applications running inside the ECU. On the other hand, the control outputs and the internal 
ECU activity must be observed in order to compute the dependability results and validate the 
benchmarking platform. The prototype section of this chapter has illustrated how to solve in a 
portable and non-intrusive manner all these problems. The idea is to use the observability 
(tracing features) and controllability (on-the-fly memory access) features provided by modern 
automotive electronic control units. In these units, these features are typically used with 
debugging and calibration purposes. Our proposal is to exploit them for running the faulload 
and tracing the engine ECU activity without inducing neither temporal nor spatial intrusion in 
the target system.  

The feasibility of the approach has been illustrated through a real-life benchmark prototype, 
which requires the target system to provide a class 3 Nexus debugging standard port. This 
standard has been chosen since it is, to the best of our knowledge, the only one having a 
processor independent specification that guarantees, by definition, a sufficient degree of 
observability and controllability without interfering with the target system. These 
characteristics are essential for coping with the ambitious goals of our benchmark 
specification.  

We are convinced that the technology exposed in this chapter constitutes a step forward to 
the provision of useful methodologies and tools for comparing the dependability of 
embedded automotive systems in general, and engine control applications in particular. The 
technology is currently mature enough to be migrated to the industry where it can enrich the 
existing engine control software development process. This is one of the directions of our 
current work. The other direction is further research-oriented and it focuses on extending our 
benchmark approach in order to characterize the dependability of more sophisticated 
(distributed) electronic control components that need to cooperate for managing mechanical 
elements that are de-localized in a vehicle. This is, for instance, the case of the antilock 
braking control systems. 
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