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Abstract 

In space real-time systems, correctness of operation depends not only on the right results 
being generated but also on the results being generated within certain time constraints. With 
the increased use of COTS Real-Time Kernels (RTK) in embedded systems the need for 
assuring a high dependability level of such kernels also arose. Among several dependability 
attributes, the determinism of the response time of RTK services, even in presence of faults, 
is of paramount importance for hard real-time systems. This is particularly true for onboard 
space systems that are more exposed to external disturbances such as radiation. 

The benchmark presented in this chapter is targeted for onboard space systems. It aims to 
allow integrators/developers to compare different RTKs with respect to their ability to 
provide their services within the expected time frame. The benchmark provides metrics for 
characterizing this capability. The main measure provided is the Predictability which scores 
a RTK vis-à-vis its system calls response time fitting within its specification. 
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3.1  Introduction 

In real-time systems correctness of operation depends not only on the accuracy of the results 
provided but also on the results being produced within certain time constraints imposed by 
the system specification [Laplante 1997]. Real-time embedded systems in general, and 
embedded systems in the avionics and space domains in particular, have a number of 
requirements regarding meeting (hard) deadlines. Since most of the functionalities of such 
systems depend on the (correct and on time) services being provided by the underlying RTK, 
the correct and predictable timing behaviour of the RTK is crucial. In fact, RTKs must exhibit 
predictable timing (and value) behaviour despite the occurrence of unpredictable external 
events [DOT/FAA 2002]. 

Malfunctioning RTKs may have a strong impact on the dependability of an embedded 
system. Considering that embedded systems are difficult, and often impossible, to 
change/correct once deployed, assessing their dependability characteristics is of paramount 
importance. While there is some work done on the characterisation of failure modes and 
robustness of real-time kernels [Kropp et al. 1998] [Chevochot and Puaut 2001] [Arlat et al. 
2002], a specific methodology to characterize the predictability of the response times of 
RTKs services is still missing. 

This chapter presents the specification of a benchmark for comparing the predictability of 
response time of a Real-Time Kernel services. This benchmark aims to allow 
integrators/developers to assess and compare different RTKs with respect to their ability to 
provide the services within the expected time frame. The benchmark is targeted at space 
domain systems and characterizes the determinism of the response time of the RTK services 
addressing the robustness with respect to faulty applications. The measurements collected are 
combined characterizing the predictability of its response time. 

The rest of the chapter is organised as follows. Section 3.2 gives an overview of space 
domain systems. Section 3.3 presents the benchmark specification while section 3.4 describes 
one specific implementation of the benchmark. Section 3.5 explains the properties on which 
the validation of the benchmark was based upon and section 3.6 presents the concluding 
remarks. 

3.2 Basics on Space systems 

The classification of a dependability benchmark requires the specification of a benchmark 
context. Since a space system is normally composed by several different subsystems each 
with its own characteristics and requirements, the first thing needed to define a benchmark for 
space systems is to clearly identify the context, and the subsystem that will be the target of 
the benchmark. Although all space systems are different since their mission purpose and 
requirements are different it is possible to identify common features and functionalities in all 
of them that lead to the definition of an abstraction of a space system. In fact, this abstraction 
is the basis that allows the definition of a benchmark targeted at space systems. 

Following this reasoning, the next section presents some basic components of a space system. 
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3.2.1 Components of Space systems 

A typical space mission is made up by several subsystems on three different segments (Figure 
3.1): 

• The Space Segment includes systems like spacecrafts, satellites or rovers carrying a 
payload such as scientific equipment (e.g. telescope) or transponders in case of 
communication satellites. Additionally to the payload, space segment systems 
normally include a Control and Data Handling Unit responsible to manage the 
spacecraft and to provide communication with the ground (control) segment. 

• The Ground Segment systems are responsible for controlling the mission, for 
monitoring the spacecraft’s orbit and position, and for receiving the science data in 
case of a science mission. 

• The User Segment systems that will process the science data provided by the 
spacecraft. 
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Figure 3.1: General view of a space system 

From the three segments, we will focus on the Space Segment. The most common and known 
systems in the space segment are possible satellites which come in all shapes and sizes and 
play a variety of roles. For example:  

• Weather satellites help meteorologists predict the weather or see what's happening 
at the moment. The satellites generally contain cameras that can return photos of 
Earth's weather.  

• Communications satellites allow telephone and data conversations to be relayed 
through the satellite. 

• Broadcast satellites relay television signals from one point to another (similar to 
communications satellites).  

• Scientific satellites perform a variety of scientific missions. The Hubble Space 
Telescope is one famous scientific satellite, but there are many others looking at 
everything from sun spots to gamma rays.  

• Navigational satellites e.g. help ships and planes navigate. The most famous are the 
GPS NAVSTAR satellites or the upcoming Galileo system.  
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• Earth observation satellites observe the planet for changes in everything from 
temperature to forestation to ice-sheet coverage.  

Despite the significant differences between all of these satellites, they have several features in 
common. For example:  

• All of them have a metal or composite frame and body, usually known as the bus or 
platform. The bus holds everything together in space and provides enough strength 
to survive the launch.  

• All of them have a source of power (usually solar cells) and batteries for storage.  

• All of them have an onboard computer to control and monitor the different 
systems.  

• All of them have a radio system and antenna. At the very least, most satellites have 
a radio transmitter/receiver so that the ground-control crew can request status 
information from the satellite and monitor its health. Many satellites can be 
controlled in various ways from the ground to do anything from change the orbit to 
reprogram the computer system.  

• All of them have an attitude control system that keeps the satellite pointing in the 
right direction. 

Like in any other industry some degree of standardisation is already available in space 
systems. For instance, most of ESA recent missions adopt the Packet Utilization Standard 
[PUS 2003] for the communication between the Ground and Space segments. A telecommand 
packet is sent to the satellite (e.g. for carrying out a manoeuvre or acquiring science data) that 
is immediately executed. The answer, either an acknowledge or actual science data, is 
returned in the form of telemetry packet. 

3.3 Benchmark Specification 

This section presents DBench-RTK – a Dependability Benchmark specification aimed to 
characterize the behaviour of real time kernels in an onboard space system in the presence of 
faults. This benchmark specification instantiates the different benchmark dimensions 
identified in Chapter 1. 

3.3.1 Benchmark Overview 

A Real Time Kernel (RTK) is much like a General Purpose Operating System (GPOS) as it 
also manages aspects of the underlying hardware and provides a set of basic services to the 
applications. Two main differences can be pointed out between an RTK and a GPOS. A 
GPOS is typically a monolithic component where application developers have no control on 
the subsystems they can “ship” with their application. RTKs are typically configurable items 
that enable downsizing by cutting out in the kernel subsystems not used by the application at 
hand. Another remarkable difference is the environment in which they are used. An GPOS, 
due to its general purpose characteristics, and can be used for a wide range of applications 
such as desktop computers used for word processing and similar uses or backend servers 
running corporate applications or database servers. RTKs on the other end, are usually used 
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for embedded systems, many diskless, where the inter process communication and timing 
issues are more important.  

The Benchmark Target (BT) for an RTK dependability benchmark corresponds naturally to 
an RTK. RTKs (as GPOSs) are used by the upper software layers through their API 
(Application Programming Interface) that defines the set of services provided by the RTK. In 
addition, the embedded application (and the RTK) requires a hardware platform and possibly 
some additional libraries to run. All these “surrounding” system components influence the 
Benchmark Target behaviour. The System Under Benchmark (SUB) defines then not only the 
Benchmark Target but also the environment where it is used including as well a reference 
application. 

The dependability benchmark presented in this chapter is more specifically a robustness 
benchmark. Robustness is one key dependability attribute that impacts the system property 
we are accessing – determinism of response time. Robustness testing has been widely used to 
assess COTS systems revealing deficiencies especially when its internal structure is unknown 
(see [Laplante 1997], [Rodriguez et al. 2002], [Moreira et al. 2003] and DOT/FAA 2002]). 
Robustness testing normally considers the system as a “black box” applying a set of test 
values to its interface. 

In this benchmark we focus on the timing robustness of the RTK with respect to erroneous 
inputs provided by the application software via the API. The set of measures defined 
characterise the timing behaviour of the RTK, especially in the case when it does not meet its 
specifications. 

The benchmark specification defines clearly the following items: 

1. The dependability measures provided by the benchmark; 

2. The system under benchmarking; 

3. The experimental dimensions: workload, faultload and procedures. 

The next subsections will address these items, while section 3.4 provides the details of a 
prototype instantiating them. 

3.3.2 Dependability measures 

On assessing the predictability of the response time of a RTK system call there are two 
remarkable issues: 

• When a system call fails to execute within the nominal time, how much it 
deviates from the specification? 

• What is the likelihood that a specific RTK system call will fail to execute 
within the nominal time? I.e. how many times can this happen. 

The predictability of a RTK is then based on the following two measures: 
• The Divergence (D), which represents the normalised difference between longest 

measured execution time of a system call in presence of faults and the nominal 
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execution time of that function. The divergence is expressed in percents and gives a 
measure of the impact or “cost” of the faults in the response time. 
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The divergence is calculated individually for each system call and then the average is 
computed to obtain a single Divergence value for the RTK. 

• The Frequency of “out of boundaries” (F) corresponds to the number of cases a 
system call execution took longer then the nominal time considering all executions. 
The frequency is expressed in percents and represents the probability of a system call 
not following is specification. 

The frequency is calculated individually for each system call and then the average is 
computed to obtain a single frequency of out of boundaries value for the RTK. 

Based on the two previous measures, a predictability value is computed. The Predictability 
(P) of a RTK is then the probability of a system call failing to execute within its specification 
time associated with a penalty on the “size” of the average time delay. 
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Annex 3-A presents a detailed specification of these measures on which any implementation 
of the benchmark must comply. 

3.3.3 System Under Benchmarking 

The Benchmark Target (BT) of this benchmark is a Real-Time Kernel (RTK), which is a 
small sized software component composed by a set of core functions common in an OS. It 
offers a number of functions and procedures to manage, for instance, tasks, semaphores, 
system memory, interrupts and signals, via its Application Programming Interface (API). 

The System Under Benchmarking (SUB) is an onboard space system composed by several 
modules defined as the Workload, The Real-Time Kernel and the Hardware Platform. 
Furthermore, a Ground Segment Emulator (GSE), running on a different hardware platform, 
emulates the control and monitoring done by system operators, providing the inputs to the 
workload. Figure 3.2 depicts the SUB considered for this benchmark.  

 

  
Figure 3.2: System Under Benchmarking 
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The workload considered exercises a subset of normal control and data handling 
functionalities used in common space systems and the GSE provides the required 
commanding and monitoring functionality to exercise the workload and the benchmark target.  

3.3.4 Experimental dimensions 

This section defines the experimental dimensions of the benchmark, namely the workload, the 
faultload, the benchmark setup and its procedure. 

3.3.4.1 Workload 

In the case of onboard space systems, there is no (widely) available performance benchmark 
which could be adapted to the dependability benchmark requirements (as it happens for 
instance with OLTP systems). A complete workload is then proposed/specified.  

This workload should be representative of the typical applications, algorithms and 
functionalities running on top of RTK in an onboard space system. One of the functionalities 
normally included in almost all satellites and spacecrafts which require services from a RTK 
component is the capability of scheduling telecommands for later execution. There are at least 
two scenarios where the capabilities for the onboard execution of operations that have been 
loaded in advance from the ground are useful [PUS 2003]: 

• Those missions that perform operations outside of ground contact because of limited 
ground station visibility or signal propagation delays; 

• Those missions whose operations concept is to minimize the dependency on the 
ground segment. Thus, a geostationary telecommunications or meteorological 
mission can perform all of its routine operations in this manner, even though the 
spacecraft is permanently in view of a ground station. This approach potentially 
increases the availability of operational services or mission products, since the 
continuous availability of the uplink is eliminated. 

The onboard telecommand scheduling functionality will be used as abstraction for the 
benchmark on real time kernel in onboard space systems. 

The workload defined in this benchmark is an Onboard Scheduler (OBS) process based on 
the onboard telecommand scheduling functionality derived from Packet Utilization Standard 
([PUS 2003]). The purpose is to simulate the reception of telecommands, store and dispatch 
them in accordance to their activation time.  

The Onboard Scheduler (OBS) receives telecommands that are recorded to be executed at a 
specified later time. Figure 3.3 shows the proposed architecture of this reference onboard 
scheduler. The workload is divided into three major modules (Telecommand Reader, 
Telecommand Storage and Dispatcher) defined in the following sub-sections. The OBS 
exercises several kernel functionalities such as task handling, process synchronization, 
message passing and timer. It receives telecommands from the input channel that are kept in 
the Telecommand Storage until their release time when they are dispatched through the 
output channel. 
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Figure 3.3: Onboard Scheduler architecture 

3.3.4.1.1 Telecommand Reader 

The Telecommand Reader is responsible for receiving the telecommands to be scheduled. As 
shown in Figure 3.3, Task A receives the incoming telecommands through the input channel 
and stores them in an internal message queue. The queue must have a fixed size and its 
accesses must be synchronized. If the message queue is full, the task(s) shall wait until a 
message is removed from the queue. Having more than one reader task increases the 
throughout in the input channel. Figure 3.4 presents a general activity diagram for this 
module. 
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Figure 3.4: Telecommand Reader Activity Diagram (Task A) 

3.3.4.1.2 Telecommand Storage 

Telecommand Storage is responsible for storing the telecommands in a way that allow a 
quick access to the release time of each telecommand to be executed. The access for the 
storage structure shall be synchronised and protected. A local semaphore shall be used to 
accomplish this requirement. 

Task B (in Figure 3.3) is responsible for retrieving the telecommands from the Telecommand 
Reader queue and inserting them in the Telecommands Storage structure. Task B remains 
blocked until a new TC is inserted in the message queue. A counter with the number of TCs 
in the storage must be maintained and updated in each access to the Telecommand Storage. 

Whenever a telecommand is inserted or retrieved from the storage, a Timer shall be reset to 
the time of execution of the next telecommand to be released. 

If a TC arrives and its execution time has already passed, it shall be released immediately and 
the Timer shall be reset after its execution. 

Finally, the Timer is in charge of triggering Task C (see Figure 3.3) which retrieves the 
telecommands that are ready for execution and sends them to the Dispatcher. 

Figure 3.5 presents the activity diagram for the Task B in the Telecommand Storage module 
and Figure 3.6.presents the activity diagram of Task C. 
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Figure 3.5: Telecommand Storage Activity Diagram (Task B) 
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Figure 3.6: Activity Diagram of Task C 

3.3.4.1.3 Dispatcher 

The Dispatcher is responsible for sending the telecommands through the output channel to a 
specific instrument of the spacecraft (e.g. a camera, rover drill, etc.). It shall include a 
message queue which access is both synchronised and protected. The Dispatcher may have 
one or more tasks (Task D Figure 3.3) that retrieve telecommands from the queue and send 
them through the output channel. This would permit to successfully dispatch of 
telecommands to different destinations at the same time. 
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3.3.4.1.4 Telecommands 

The Ground Segment Emulator is responsible for providing input to the workload, thus 
imposing a load on the Benchmark Target, as well as for receiving its outputs. 

The input consists in a set of telecommands to be stored and scheduled for later execution. 
This set of telecommands defines the execution profile of the workload and its duration. 
Table 3.1 shows the time when the telecommands should be uploaded to the SUB and their 
associated release times. The type of telecommands to be sent is not specified since the OBS 
does not consider the actual command but only its release time.  

Table 3.1: Set of telecommands 

Delay between the  
telecommands sent 

(measured in milliseconds in 
the GSE) 

Release time 

(measured in microseconds 
from boot in SUB) 

1000 100 

500 150 

200 170 

100 180 

100 190 

100 200 

100 210 

200 230 

1000 330 

1000 430 

1000 530 

1000 630 

1000 730 

1000 830 

100 840 

100 850 

100 860 

100 870 

1000 970 

1000 1070 

1000 1170 

1000 1270 

1000 1370 

1000 1470 

3.3.4.2 Fault model and Faultload 

The fault model considered in this benchmark consists in corrupting a single parameter of a 
system call at a time. The faults are inserted at workload level by mutation. Figure 3.7 
illustrates the location of the inserted faults. 
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Figure 3.7: Faultload location in SUB. 

The parameter corruption consists in replacing a parameter with a test value from the set of 
values defined in Table 3.2. Only one parameter is corrupted at a time. All system calls 
having parameters and used in the workload implementation are corrupted during the 
benchmark execution. Figure 3.8 shows an example of the corruption process. 

 
 

Figure 3.8: Snippet of code with examples before and after Fault Insertion. 

Ideally, all valid possible values for the parameter should be used as test values. Since this 
would have a huge impact on the total benchmark execution time and many of the values 
would have a similar impact, only a set of representative test values is considered from the 
entire possible range. 

The set of test values to use for each basic type includes typically the values 0, 1, -1 and the 
type boundaries (minimum and maximum). In addition to the previous values, a set of N 
representative values from the range of the basic type are used.  

For unsigned, M bits wide, data types, with the range like [0 ; 2M - 1] the values Vi for i = 
1..N are generated according to the formula (a). The values generated by the formula are 
evenly spread among the range in a logarithmic scale that diversifies the generated 
population. The values obtained are representative of each data type and repeatable. 
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For signed data types with the range like [ -2M ; 2M - 1 ] half of test values are calculated with 
the above formula and the  other half of values is composed of the opposite numbers. The 
generated test values should be rounded to the integer type if necessary. 

Table 3.2 shows the set of test values defined for each basic data type. 

Table 3.2: Test values used for each basic data type 

Type Name Typical and Boundaries values used for each basic data 
type 

Other Values 

Char 0, 1, 255 

signed char 0, -1, 1, -128, 127 

Int 0, -1, 1, -2147483648, 2147483647 

unsigned int 0, 1, 4294967295 

short int 0, -1, 1, -32768, 32767 

unsigned short int 0, 1, 65535 

Long 0, -1, 1, -9223372036854775808, 9223372036854775807 

unsigned long 0, 1, 18446744073709551615 

Pointers NULL1 

Vi for i = 1..N 
accordingly to the 
formula (a). 

 

Some system call parameters have a direct influence in its execution time. A simple example 
is the function sleep where the execution time of the function is passed as parameter. 
Inserting a fault in this parameter (e.g. MAX_INT) would increase dramatically the measured 
execution time of the function in presence of faults. But this increase in the execution time is 
actually the normal behaviour since it is the defined functionality. Thus, in order not to 
wrongly characterise the timing behaviour of system calls such parameters must not be 
subjected to faults. 

3.3.4.3 Benchmark Setup 

Three main elements compose the setup required to run the DBench-RTK benchmark (see 
Figure 3.9): 

• The System Under Benchmarking (SUB) running the Benchmark Target together 
with the defined workload (see section 3.3.4.1). 

• The Benchmark Management System (BMS) responsible for (i) uploading the 
workload and the faultload into the SUB, (ii) controlling the benchmark execution 
and (iii) storing the results. 

• The Ground Segment Emulator (GSE) provides the workload running with the 
necessary telecommands to be processed and receives the associated telemetry. The 
GSE interacts with the workload (in the SUB) sending the set of telecommands, at 
the predefined time, to be processed. When the telecommands are later executed the 
GSE receives any telemetry sent by the SUB. 

                                                 

1  The only typical test value used for pointers is the NULL pointer. Other test values will also be generated 

accordingly to the formula. 
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Figure 3.9: Dench-RTK Benchmark Setup 

3.3.4.4 Benchmark procedure 

In this kind of embedded systems, the workload is compiled and linked together with the 
RTK into a single memory image file that is executed in the target system. In some extent it 
can be considered that the workload and the RTK are a single application. 

The Benchmark Management System is responsible to control the overall benchmark process, 
supervising the execution of all experiments. The application is always compiled and 
uploaded to the target system before executed to ensure consistent steady state at the 
beginning of each experiment. Upon uploading the workload the BMS signals the Ground 
Segment Emulator to start sending the telecommands defined in the configuration file and 
waits for the workload to complete its execution. The BMS then stores the collected 
execution times, used later on to calculate the benchmark measures. 

The execution time of a system call is collected every time it is executed in the workload 
even when the fault is not applied in it. In this way we measure any effects of a potential 
propagation of errors from one system call to another while getting also more statistically 
meaningful results for each system call. 

The benchmark is applied in three steps: 

1. Execute the nominal workload (without faults). 

In this step the BMS will upload and execute the workload without applying any 
faults. Executing the workload without applying any faults but still collecting the 
execution times of the system calls allows obtaining the nominal execution times of 
every system call in the workload. These nominal execution times will set the basis 
for comparison when computing the benchmark measures in the presence of a 
faultload. 
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2. Execute the workload with faults. 

In this step the BMS will execute the workload with faults. The BMS will corrupt 
the parameters of every system call in the workload changing it by every test value 
as defined in 3.3.4.2. BMS will mutate the workload source code applying one fault 
at a time and then recompile the whole application before uploading to the target 
system for executing. The number of possible parameter corruptions defines the 
number of times that the workload is executed in this step. The system is restarted 
after each execution. 

As in the previous step, the execution time of all system call in the workload is 
collected and stored to be accounted for when calculating the benchmark measures. 

3. Compute the benchmark measures. 

After executing all experiments, the BMS computes the benchmark measures as 
defined in section 3.3.2 and Annex 3-A. 

3.4 Benchmark Prototype 

This section presents one implementation of the Dependability Benchmark for the space 
domain defined in the previous section. The prototype includes both the implementation of 
the workload, the faultload and the set of procedures necessary to execute the benchmark. 
The main goal of the prototype is to show the feasibility of the dependability benchmark 
specification presented. 

In order to follow the specification, the implementation must cover all topics addressed by the 
specification instantiating them in a concrete case. Namely, the system under benchmarking 
must be put together for the selected benchmark target; the workload must be implemented or 
customized; and a method to apply the faultload must be implemented. Additionally the 
benchmark management system must be implemented to automate the procedures defined in 
the specification and compute the benchmark measures – divergence, frequency of out of 
boundaries and predictability. 

3.4.1 Benchmark Configuration 

This section describes the configuration details of the prototype. The selected benchmark 
target, the setup and the automation procedures used are described. 

3.4.1.1 Benchmark Target (BT) Description  

The Benchmark Target (BT) selected for this prototype is a RTK, named RTEMS (Real-Time 
Executive for Multiprocessor Systems version 4.5.0) [OAR 2000], customised for the 
SPARC-ERC32 space environment processor. 

RTEMS provides a high performance environment for embedded critical and military 
applications with the following features: 

• Multitasking capabilities; 
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• Homogeneous and heterogeneous multiprocessor systems support; 

• Event-driven, priority based, pre-emptive scheduling; 

• Optional rate monotonic scheduling; 

• Intertask communication and synchronisation; 

• Priority Inheritance mechanisms; 

• Responsive interrupt management; 

• Dynamic memory allocation; 

• High level of user configurability. 

The internal architecture for RTEMS can be viewed as a set of layers that work closely with 
each other to provide the set of services to the real time applications. The executive interface 
presented to the application is formed by directives (RTEMS API Calls) grouped into logical 
sets called resource managers, as presented in Figure 3.10. 

 

 
Figure 3.10: RTEMS Classic API Internal Architecture 

RTEMS 4.5.0 provides several APIs for real time application programming. The Classic API 
was selected and used by the workload. The Classic API is the native and older RTEMS API. 
Each manager is responsible for a specific feature, e.g.: 

• The Initialization Manager is responsible for initiating and shutting down RTEMS. 

• The Task manager provides a comprehensive set of directives to manage and 
administer tasks; 

• The Timer Manager provides support for timer facilities; 

• The Semaphore Manager provides support for synchronisation and mutual exclusion 
capabilities; 

• The Message Manager provides communication and synchronisation facilities using 
RTEMS message queues; 

• The Signal Manager provides the features required for asynchronous 
communication; 

• The Partition Manager provides facilities to dynamically allocate memory in fixed-
size units; 
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The RTEMS version 4.5.0 is distributed via anonymous ftp. This release can be found in 
ftp://ftp.oarcorp.com/pub/rtems/releases/4.5.0. The complete source code and documentation 
can be found in www.rtems.com. 

The list of API functions actually used in this workload implementation is presented in the 
next section. 

3.4.1.2 Benchmark Setup 

Figure 3.11 presents the instantiation used of the general benchmark setup presented in Figure 
3.9 (page 3-14). The benchmark setup as three main components: the System Under 
Benchmarking, the Ground Segment Emulator and the Benchmark Management System. 

The hardware platform considered in the System Under Benchmarking is based on an 
ERC32 processor. ERC32 is a radiation hardened processor based on the SPARC architecture 
developed specifically to be used in the space environment. In this specific case the hardware 
platform was simulated using a Sparc-ERC32 simulator2. The benchmark target runs on this 
hardware platform together with the onboard scheduler workload detailed in the next section. 

The Benchmark Management System was implemented using Xception™ tool 
[XCEPTION]. Xception™ tool was used to automate the execution of the experiments and to 
control the process of fault insertion. 

Xception™ uses three scripts to automate the experiments: 
• Build script used to compile the workload and build it together with the RTK into an 

image file to be executed in the target system. 

• Input Generator used to signal the Ground Segment Emulator that the target system 
has been reset and can start sending the telecommands. 

• Output Collector used to extract the execution times from the workload output and 
store them in the database. 

The Ground Segment Emulator emulates the ground control sending the predefined set of 
telecommands to the SUB and receiving the telemetry provided by it. 

                                                 

2 The simulator used is embedded in sparc-rtems-gdb, a flavoured version of the GNU Debugger. 



DBench  Dependability Benchmark for Real Time Kernels in Onboard Space Systems  

3-18 

 
Figure 3.11: Benchmark Configuration 

All processes were running on a single machine whose characteristics are summarized in 
Table 3.3. 

Table 3.3: Test Machine Configuration 

vendor_id : GenuineIntel 

cpu family  : 6 

Model  : 5 

model name  : Pentium II (Deschutes) 

cpu MHz  : 400.915 

cache size  : 512 KB 

RAM Mem  : 256 MB 

OS running : Linux kernel 2.4.19-4GB SuSe 8.1 

database : PostgreSQL 7.2.2 

compiler : cross-compiler sparc-ERC32-rtems v2.95.2 19991024 (release) 

ERC32 Sim. : 4.18 (configured for SPARC-ERC32 target) 

Injection tool : Xception™ 2.0 (with ERC32-RTEMS Software plug-in) 

 

3.4.2 Workload 

The workload implements in the C language the OnBoard system Scheduler (OBS) as defined 
in the specification. 

The workload is a synchronized multitasking application with six concurrent tasks that 
exercise several RTEMS system calls. Apart from the modules identified in the workload 
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additional module used for the workload initialisation. All modules are described in the 
following subsections including the identification of the RTEMS system calls exercised by it.  

3.4.2.1 Initialization Procedures 

The main and init tasks are responsible for the initialization of all other tasks, system 
memory, structures, objects and variables used in the workload. Both tasks are deleted from 
the system after the initialisation. 

In order to have concurrent tasks, all processes are created with the same priority.  

The Telecommand Storage is implemented using a partition with 8 slots. Pointers to each 
buffer are stored in an array and each message queue is created with a size of 12 
telecommand structures. 

Table 3.4 lists the kernel functions used by the initialization tasks. 

Table 3.4: RTEMS system calls used in the Initialization process 

API Name Manager 

rtems_task_create Task 

rtems_task_start Task 

rtems_task_set_priority Task 

rtems_task_mode Task 

rtems_clock_set Clock 

rtems_timer_create Timer 

rtems_partition_create Partition 

rtems_partition_get_buffer Partition 

rtems_semaphore_create Semaphore 

rtems_semaphore_obtain3 Semaphore 

rtems_semaphore_release Semaphore 

rtems_message_queue_create Message 

3.4.2.2 Telecommand Reader Module 

Telecommand Reader receives telecommands sent by the GSE, temporally stores them in a 
queue and then sends them to the Telecommand Storage. 

A single task for receiving telecommands from the input channel was implemented. 

This module uses several RTEMS functions as shown in Table 3.5. 

                                                 

3  This function call was used by the workload but was not measured since its response time depends on other 

system variables. 
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Table 3.5: RTEMS system calls used in the Telecommand Reader module 

API Name Manager  

rtems_task_set_priority Task 

rtems_task_mode Task 

rtems_task_set_priority Task 

rtems_timer_fire_after Timer 

rtems_timer_cancel Timer 

rtems_semaphore_obtain Semaphore 

rtems_semaphore_release Semaphore 

rtems_message_queue_send Message 

rtems_message_queue_get_message_pending Message 

3.4.2.3 Telecommand Storage Module 

The Telecommand Storage module is responsible for storing the telecommands in a defined 
structure. The storage was implemented using RTEMS partitions.  

A local binary semaphore was used to synchronise and protect the accesses to the storage. 
The counting of the number of TC in the system is protected by binary semaphores, which are 
obtained in each update, insertion or removal of TCs. 

Whenever a telecommand is inserted or retrieved from the storage, the system timer is reset to 
the time of execution of the next telecommand to be launched. 

The RTEMS functions exercised in this module are listed in Table 3.6. 

Table 3.6: RTEMS system calls used in the Telecommand Storage module 

API Name Manager  

rtems_task_resume Task 

rtems_task_set_priority Task 

rtems_task_mode Task 

rtems_clock_get_time Clock 

rtems_timer_fire_after Timer 

rtems_timer_cancel Timer 

rtems_semaphore_release Semaphore 

rtems_message_queue_send Message 

rtems_message_queue_receive Message 

rtems_message_queue_get_message_pending Message 

3.4.2.4 Dispatcher Module 

The Dispatcher module includes a message queue which access is both synchronised and 
protected. 

A special ending telecommand (with the command “END”) is used (i) to force the OBS to 
clean up the system, deleting all objects used and returning the used memory, and (ii) to 
terminate its execution. 

The RTEMS functions exercised in this module are described in Table 3.7. 
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Table 3.7: RTEMS system calls used in the Dispatcher module 

API Name Manager  

rtems_task_set_priority Task 

rtems_task_mode Task 

rtems_semaphore_release Semaphore 

rtems_message_queue_receive Message 

rtems_message_queue_get_message_pending Message 

3.4.2.5 Time Measurement 

The execution time of system calls was measured by collecting a timestamp just before and 
after calling the function. The associated timer was initialised just before collecting the first 
timestamp. 

In order to eliminate influences on the results by other running tasks, pre-emption was 
avoided during the measurement process. This was accomplished taking into account three 
actions that assure that only a single task is inside the measuring block at a time and that this 
task will not be pre-empted: 

• A Semaphore was used; 

• The task’s priority was raised; 

• The task’s execution mode was changed in order not to be pre-empted, to avoid 
asynchronous signals and to avoid time slicing between tasks. 

3.4.3 Faultload 

The test values for each data type were used as specified. Additionally 100 test values for 
each data type were computed applying the formula provided in the benchmark specification. 

The test values to use for each data type are pre-defined in a configuration file. Another 
configuration file is used to describe the signatures of system calls to exercise. Using these 
two configuration files as input, an automated procedure parses the workload source code 
looking for the selected system calls. For each system call found, the automated procedure 
creates mutants changing the source code replacing its parameters by every test value defined 
in the configuration file for the parameter type. 

Each mutant was then compiled, built and executed. 

3.4.4 Experiments and results 

The faultload applied to the workload implementation generated a total 5200 different faults 
(5200 mutants). Each fault was applied one by one in independent executions of the 
workload. When analysing the results, the faults with direct influence in the execution time of 
the system call were discarded leading to 2622 workload executions being accounted for the 
results. 

The results should be read bewaring that: 
• The Divergence range is from 0% (best) to ∝% (worst)). 
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• The Frequency range if from 0% (best) to 100% (worst)). 

• The Predictability range is from 0.0 (worst) to 1.0 (best)). 

3.4.4.1 Benchmark Results 

The benchmark results obtained computing the measures defined in the specification are 
presented in Table 3.8.The predictability value suggests that the RTK under analysis has a 
high degree of determinism. 

Table 3.8: Benchmark Results for RTEMS 

 Divergence Frequency Predictability 

Target System 16.7 % 0.9 % 0.8492 

More detailed information including the preliminary results leading to these final results can 
be found in Annex 3-B. 

3.4.4.2 Effort needed and Benchmark duration  

The effort used for implementing the prototype was about 4 man month. This includes the 
time needed to implement the workload (including the Ground Segment Emulator), the 
faultload and the scripts to automate the benchmark execution process using Xception. The 
time needed to run the benchmark and analyse the results is also included. 

Customizing the Customizing the benchmark prototype to a new system is estimated to take 1 
man month. 

The benchmark execution time was about 2 days (≈ 44 hours) executing continuously. This 
was calculated taking the gold run execution time plus the average execution time with faults 
(≈ 30.5 seconds) multiplied by the total number of faults injected (5200). 

The total benchmark execution time can be customized to the requirements and/or limitations 
of the benchmark user. This customization is done by changing the number of test values for 
each data type. Decreasing the number of test values for each data type (reducing the number 
N in formula (a), section 3.3.4.2) impacts directly on the total number of faults generated and, 
thus, on the time required to execute the benchmark. It also impacts on the representativeness 
of the faultload. 

3.5 Benchmark Validation 

Validating a benchmark is ensuring that the set of properties defined in Chapter 1 are verified 
both by the benchmark specification and its implementation(s). The properties to be verified 
are the representativeness, repeatability and reproducibility, portability, non-intrusiveness and 
scalability. 

Since only one implementation of the benchmark was performed, some of their properties 
were not verified and claims that such properties are fulfilled are presented instead. 
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The next sections discuss these properties. 

3.5.1 Representativeness 

Real-time applications in general, and in the space domain in particular, have (hard) deadlines 
to meet and their functionality is dependent on the services provided by the underlying real-
time kernel. The measures provided by the benchmark allow characterisation and comparison 
of the timing behaviour of an RTK in presence of faults. 

The workload selected – an Onboard Scheduler – implements a functionality that is present in 
almost every spacecrafts. Furthermore, its specification is based upon a European standard. . 

Critical embedded systems are usually thoroughly verified and tested before deployment but 
even in this type of systems around 10 software defects per 1000 lines still remain in it after 
deployment [Regan and Hamilton 2004]. The faultload specified emulates software defects of 
the same type and nature of residual faults available in RTK COTS [Kropp et al. 1998]. 

3.5.2 Reproducibility and Repeatability 

This dependability benchmark is composed of a set of experiments. In each experiment the 
system is reset and the application is uploaded again to it. This makes the experiments 
independent from each other. Only a single fault is impacted on the system per each 
experiment, thus facilitating reproducibility. 

3.5.3 Portability 

A dependability benchmark is portable if it can be easily applied to different benchmark 
targets. Every item in the benchmark specification is defined in a general way without relying 
on details of any specific system. 

The workload definition does not refer to any peculiarities of any RTK, thus being able to be 
implemented for different RTKs. 

The faultload definition is also generic and portable. Every parameter of every system call 
used in the workload implementation is to be corrupted using a set of test values. The test 
values are defined referring to the basic data type with counterparts in every system and 
programming language. 

3.5.4 Non-intrusiveness 

In these types of embedded systems the workload and the kernel are compiled together into 
one single image file that is burned in an EPROM and placed in (or uploaded to) the target 
system. The faults are inserted at the workload mutating the source code before compiling it 
and then the workload run freely after being uploaded.  

The Benchmark Target (the RTK) is never modified. 
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3.5.5 Scalability  

The benchmark specification has several characteristics that allow scaling. 

The size of the queues in the workload components can vary accordingly to the number of 
tasks interacting with the input/output channels. Also the number and frequency of 
telecommands sent to the target system can be adapted for systems with different sizes. 

The number of test values for each basic data type can also be adapted depending on the 
system size and restrictions. The number of test values for each basic data type impacts 
directly on the number of faults to insert and on the total time required to execute the 
benchmark.  

3.6 Conclusions 

COTS Real-Time Kernels are increasingly used in embedded systems and in particular in the 
space domain. The applications running on these systems depend on the services being 
provided correctly and within the specified time constraints. 

This chapter presented the specification of a dependability benchmark for assessing the 
timing behaviour of Real-Time Kernel service calls. The benchmark is targeted at space 
domain systems and addresses mainly the robustness of the RTK with respect to faulty 
applications. 

An abstraction of a spacecraft was used in the definition of the benchmark workload. In this 
abstraction, a spacecraft is defined by a functionality found in almost every control and data 
handling unit – an Onboard Scheduler.  

The fault model used defines a set of test and boundary values to be applied to the parameters 
of RTK service calls. The type of faults considered is well-known in the domain of robustness 
and interface testing but used here with a different goal [Kropp et al. 1998]. The fault model 
is focused on characterization of the timing behaviour of the service calls in presence of 
faults. 

A prototype of the benchmark was implemented and presented in section 3.4 along with the 
results obtained. This prototype demonstrated the feasibility of the benchmark specification 
showing that it can be successfully implemented. The prototype helped on the verification of 
the benchmark properties, namely the representativeness and non-intrusiveness. 

Both the benchmark and the implementation can be improved specially regarding the required 
number of test values to use for each basic data type that impacts greatly the execution time 
of the benchmark. Implementation of the benchmark on another Target System is required to 
further benchmark validation. 
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Annex 3-A Detailed Measures definition 

This annex presents a detailed and formal definition of the measures used in this 
dependability benchmark. 

Please note that system call is often referred to as function throughout this annex. 

3-A.1 Notation 

All definitions in this subsection concerns the data collected during the execution of the 
benchmark. 

All execution times collected are denoted as type
indexT  with type representing the different kind of 

executions (nominal and with faults)4 and index describing the circumstances (system call 
and its specific execution). Execution time is represented in time units (seconds, milliseconds, 
microseconds or nanoseconds as necessary). 

For every system call X of the workload there will be alno
XN

min  (from step 1 of section 3.3.4.4) 

execution times collected denoted as alno
mXT
min

,  (for m = 1.. alno
XN

min ). 

For every system call X of the workload there will be fault
XN  (from step 2 of section 3.3.4.4) 

execution times collected denoted as fault
kXT ,  (for k = 1.. fault

XN ). 

The exact number of execution times for each system call depends on the execution profile of 
the workload. 

3-A.2 Special cases 

Whenever the workload execution is aborted and it can be proved that a specific system call 
caused the system to hang, this system call is assigned, as execution time, a time equal to the 
workload execution time. 

3-A.3 Measures for individual system calls 

The nominal execution time of each system call X present in the workload is obtained 
considering the maximum value collected during the first step of the benchmark: 

( )alno
mXm

alno
X TMaximumT min

,
min

max, = . 

                                                 

4 When the workload is executed without inserting any faults during its execution, the collected execution time 

is considered of type nominal. If a fault is inserted during the workload execution, the collected execution 

time is considered of type fault. 
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The execution time in presence of faults of each system call X present in the workload is 
obtained from the maximum value collected: 

( )fault
kXk

fault
X TMaximumT ,max, = . 

 

The benchmark measures are computed from these values. 

The Divergence of each function X is denoted as DX. Divergence is expressed in percent and 
represents the difference between the longest measured time duration of function X in the 
presence of faults and its nominal execution time. Thus, it is calculated as: 

alno
X

alno
X

fault
X

X T
TT

D min
max,

min
max,max, −

= . 

If DX is less then zero after the calculation, then DX is assigned the value 05. 

 

The Frequency of out of boundaries execution of each function X is denoted as FX. 
Frequency is expressed in percent and represents the percentage of cases that the execution of 
a function in presence of faults is longer than its nominal execution time: 

fault
X

X
X N

S
F = , 

for { }alno
mX

fault
kX

fault
kXX TTTS min

,,, : >= ; k = 1.. fault
XN . 

 

The Predictability PX, used as single summary result for each function X, is defined as the 
proportion between the area of predictable executions and the area of all executions with 
faults (see Figure 3.12). These areas are pointed as rectangles with the execution time pointed 
as height and the number of executions pointed as length. 

 

                                                 

5  The execution time of a function with an erroneous parameter may be shorter than its nominal execution 

time. This may occur when the function is not executed and an error code or an exception is returned after 

some validity checks.  
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Figure 3.12: Predictability Model Definition 

)1(
)1(

|)|(

__

|)|(

|)|(
_.__
_.__

min
max,

max,

min
max,

max,

max,

min
max,

x

x

alno
X

fault
X

fault
X

X
fault
X

alno
X

fault
X

fault
X

X
fault
X

fault
X

fault
X

X
fault
X

alno
X

D
F

T
T

N
SN

timesthestricting

T
T

N
SN

NT
SNT

Brectofarea
ArectofareaPx

+
−

=

=

−

=

=≅

−

=

=
×

−×
==

 

Thus, the Predictability is given as: 

)1(
)1(

x

x
x D

FP
+
−= . 

 

The value of PX is in range [0 .. 1] and the more near of 1 PX is, the more predictable a 
function X is. 

3-A.4 Benchmark measures  

The Divergence D is calculated as the average of the computed divergences of individual 
system calls: 

D = Average for all X ( DX ). 

0 

Predictable 
executions 

Time of execution 

|SX| 

fault
XN

X
fault
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XT
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max,

fault
XT max,

All executions 
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The Frequency F is calculated as the average of the computed frequency of individual system 
calls: 

F = Average for all X ( FX ). 

The Predictability P evaluates the determinism of the response time and it is calculated as: 

)1(
)1(

D
F

P
+
−

= . 
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Annex 3-B Detailed results obtained 

This annex presents the benchmark results by manager and directive. The number of 
measurements is different for each function because it depends on the execution profile of the 
workload. 

The results should be read understanding that: 
• The Divergence range is from 0% (best) to ∝% (worst)). 

• The Frequency range is from 0% (best) to 100% (worst)). 

• The Predictability range is from 0.0 (worst) to 1.0 (best)). 

Table 3.9 summarises the results obtained by each manager while Figure 3.13 depicts 
graphically the predictability of each manager. 

Subsequent sections present the results obtained for each directive by manager. 

Table 3.9: Benchmark results for RTEMS managers 

Managers Total number of 
measurements  Divergence  Frequency  Predictability  

Timer Manager 118398 24.98 % 3.02 % 0.776 

Task Manager 2584193 22.94 % 7.2e-5 % 0.8134 

Partition Manager 25151 0 % 0 % 1 

Message Manager 157068 6.53 % 0.44 % 0.9346 

Semaphore Manager 197636 44.57 % 0.74 % 0.6866 

Clock Manager 91509 1.19 % 1.19 % 0.9765 

0
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Task Manager
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Message Manager
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Clock Manager

 
Figure 3.13: Managers response time analysis 
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3-B.1 Timer Manager  

Four functions from the Timer Manager where subject to evaluation. Table 3.10 presents the 
values obtained for this manager. 

Table 3.10: Benchmark results for the RTEMS Timer manager 

 
Number of 

Measurements Divergence Frequency Predictability 

Timer Manager 118398 24.98 % 3.02 % 0.7760 

Function call     

rtems_timer_fire_after 57799 1.82 % 1.7e-3 % 0.9821 

rtems_timer_cancel 57885 85.71 % 1.7e-3 % 0.5385 

rtems_timer_delete 828 7.41 % 0.24 % 0.9288 

rtems_timer_create 1886 5.00 % 11.82 % 0.8398 

3-B.2 Task Manager  

Five function calls were tested in the Task Manager (see: Table 3.11). 

Table 3.11: Benchmark results for the RTEMS Task manager 

 
Number of 

Measurements Divergence Frequency Predictability 

Task Manager 2584193 22.94 % 7.2e-5 % 0.8134 

Function call     

rtems_task_start 9975 0 % 0 % 1 

rtems_task_delete 3563 0 % 0 % 1 

rtems_task_create 9979 0 % 0 % 1 

rtems_task_mode6 1536306 112.12 % 2.6e-4 % 0.4714 

rtems_task_set_priority 1024370 2.59 % 9.8e-5 % 0.9748 

3-B.3 Partition Manager  

Table 3.12 presents the results obtained for the Partition Manager.  

Table 3.12: Benchmark results for the RTEMS Partition manager 

 
Number of 

Measurements Divergence Frequency Predictability 

Partition Manager 25151 0 % 0 % 1 

Function call     

rtems_partition_get_buffer 15143 0 % 0 % 1 

rtems_partition_delete 916 0 % 0 % 1 

rtems_partition_create 1969 0 % 0 % 1 

rtems_partition_return_buffer 7123 0 % 0 % 1 

                                                 

6  Both rtems_task_mode and rtems_task_set_priority functions have a higher number of executions because 

they are also used in the each measurement process. 
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3-B.4 Message Manager  

The Message Manager results are presented in Table 3.13. 

Table 3.13: Benchmark results for the RTEMS Message manager 

3-B.5 Semaphore Manager  

Table 3.14 shows the results obtained for the Semaphore Manager. 

Table 3.14: Benchmark results for the RTEMS Semaphore manager 

 
Number of 

Measurements Divergence Frequency Predictability 

Semaphore Manager 197636 44.57 % 0.74 % 0.6866 

Function call     

rtems_semaphore_release 187843 116.67 % 7.5e-3 % 0.4615 

rtems_semaphore_delete 3302 13.33 % 0.3 % 0.8797 

rtems_semaphore_create 6491 3.7 % 1.91 % 0.9459 

3-B.6 Clock Manager  

The Clock Manager results are presented in Table 3.15.  

Table 3.15: Benchmark results for the RTEMS Clock manager 

 
Number of 

Measurements Divergence Frequency Predictability 

Clock Manager 91509 1.19 % 1.19 % 0.9765 

Function call     

rtems_clock_set 2264 2.38 % 2.39 % 0.9534 

rtems_clock_get 89245 0 % 0 % 1 

 

 
Number of 

Measurements Divergence Frequency Predictability 

Message Manager 157068 6.53 % 0.44 % 0.9346 

Function call     

rtems_message_queue_create 4134 1.89 % 0.85 % 0.9732 

rtems_message_queue_get_number_pending 62279 0 % 0 % 1 

rtems_message_queue_receive 27436 0 % 0 % 1 

rtems_message_queue_delete 2037 16.22 % 1.33 % 0.8491 

rtems_message_queue_send 61182 14.55 % 6.5e-3 % 0.873 






