

Chapter 3:
Dependability Benchmark Real Time
Kernels in Onboard Space Systems

Abstract

In space real-time systems, correctness of operation depends not only on the right results
being generated but also on the results being generated within certain time constraints. With
the increased use of COTS Real-Time Kernels (RTK) in embedded systems the need for
assuring a high dependability level of such kernels also arose. Among several dependability
attributes, the determinism of the response time of RTK services, even in presence of faults,
is of paramount importance for hard real-time systems. This is particularly true for onboard
space systems that are more exposed to external disturbances such as radiation.

The benchmark presented in this chapter is targeted for onboard space systems. It aims to
allow integrators/developers to compare different RTKs with respect to their ability to
provide their services within the expected time frame. The benchmark provides metrics for
characterizing this capability. The main measure provided is the Predictability which scores
a RTK vis-à-vis its system calls response time fitting within its specification.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-2

3.1 Introduction

In real-time systems correctness of operation depends not only on the accuracy of the results
provided but also on the results being produced within certain time constraints imposed by
the system specification [Laplante 1997]. Real-time embedded systems in general, and
embedded systems in the avionics and space domains in particular, have a number of
requirements regarding meeting (hard) deadlines. Since most of the functionalities of such
systems depend on the (correct and on time) services being provided by the underlying RTK,
the correct and predictable timing behaviour of the RTK is crucial. In fact, RTKs must exhibit
predictable timing (and value) behaviour despite the occurrence of unpredictable external
events [DOT/FAA 2002].

Malfunctioning RTKs may have a strong impact on the dependability of an embedded
system. Considering that embedded systems are difficult, and often impossible, to
change/correct once deployed, assessing their dependability characteristics is of paramount
importance. While there is some work done on the characterisation of failure modes and
robustness of real-time kernels [Kropp et al. 1998] [Chevochot and Puaut 2001] [Arlat et al.
2002], a specific methodology to characterize the predictability of the response times of
RTKs services is still missing.

This chapter presents the specification of a benchmark for comparing the predictability of
response time of a Real-Time Kernel services. This benchmark aims to allow
integrators/developers to assess and compare different RTKs with respect to their ability to
provide the services within the expected time frame. The benchmark is targeted at space
domain systems and characterizes the determinism of the response time of the RTK services
addressing the robustness with respect to faulty applications. The measurements collected are
combined characterizing the predictability of its response time.

The rest of the chapter is organised as follows. Section 3.2 gives an overview of space
domain systems. Section 3.3 presents the benchmark specification while section 3.4 describes
one specific implementation of the benchmark. Section 3.5 explains the properties on which
the validation of the benchmark was based upon and section 3.6 presents the concluding
remarks.

3.2 Basics on Space systems

The classification of a dependability benchmark requires the specification of a benchmark
context. Since a space system is normally composed by several different subsystems each
with its own characteristics and requirements, the first thing needed to define a benchmark for
space systems is to clearly identify the context, and the subsystem that will be the target of
the benchmark. Although all space systems are different since their mission purpose and
requirements are different it is possible to identify common features and functionalities in all
of them that lead to the definition of an abstraction of a space system. In fact, this abstraction
is the basis that allows the definition of a benchmark targeted at space systems.

Following this reasoning, the next section presents some basic components of a space system.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-3

3.2.1 Components of Space systems

A typical space mission is made up by several subsystems on three different segments (Figure
3.1):

• The Space Segment includes systems like spacecrafts, satellites or rovers carrying a
payload such as scientific equipment (e.g. telescope) or transponders in case of
communication satellites. Additionally to the payload, space segment systems
normally include a Control and Data Handling Unit responsible to manage the
spacecraft and to provide communication with the ground (control) segment.

• The Ground Segment systems are responsible for controlling the mission, for
monitoring the spacecraft’s orbit and position, and for receiving the science data in
case of a science mission.

• The User Segment systems that will process the science data provided by the
spacecraft.

Mission Control
System

Cloud

GROUND SEGMENT

SPACE SEGMENT

USER SEGMENT

Onboard Platform

Payload

Application

Real-Time Kernel

Onboard Platform

Payload

Application

Real-Time Kernel

Figure 3.1: General view of a space system

From the three segments, we will focus on the Space Segment. The most common and known
systems in the space segment are possible satellites which come in all shapes and sizes and
play a variety of roles. For example:

• Weather satellites help meteorologists predict the weather or see what's happening
at the moment. The satellites generally contain cameras that can return photos of
Earth's weather.

• Communications satellites allow telephone and data conversations to be relayed
through the satellite.

• Broadcast satellites relay television signals from one point to another (similar to
communications satellites).

• Scientific satellites perform a variety of scientific missions. The Hubble Space
Telescope is one famous scientific satellite, but there are many others looking at
everything from sun spots to gamma rays.

• Navigational satellites e.g. help ships and planes navigate. The most famous are the
GPS NAVSTAR satellites or the upcoming Galileo system.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-4

• Earth observation satellites observe the planet for changes in everything from
temperature to forestation to ice-sheet coverage.

Despite the significant differences between all of these satellites, they have several features in
common. For example:

• All of them have a metal or composite frame and body, usually known as the bus or
platform. The bus holds everything together in space and provides enough strength
to survive the launch.

• All of them have a source of power (usually solar cells) and batteries for storage.

• All of them have an onboard computer to control and monitor the different
systems.

• All of them have a radio system and antenna. At the very least, most satellites have
a radio transmitter/receiver so that the ground-control crew can request status
information from the satellite and monitor its health. Many satellites can be
controlled in various ways from the ground to do anything from change the orbit to
reprogram the computer system.

• All of them have an attitude control system that keeps the satellite pointing in the
right direction.

Like in any other industry some degree of standardisation is already available in space
systems. For instance, most of ESA recent missions adopt the Packet Utilization Standard
[PUS 2003] for the communication between the Ground and Space segments. A telecommand
packet is sent to the satellite (e.g. for carrying out a manoeuvre or acquiring science data) that
is immediately executed. The answer, either an acknowledge or actual science data, is
returned in the form of telemetry packet.

3.3 Benchmark Specification

This section presents DBench-RTK – a Dependability Benchmark specification aimed to
characterize the behaviour of real time kernels in an onboard space system in the presence of
faults. This benchmark specification instantiates the different benchmark dimensions
identified in Chapter 1.

3.3.1 Benchmark Overview

A Real Time Kernel (RTK) is much like a General Purpose Operating System (GPOS) as it
also manages aspects of the underlying hardware and provides a set of basic services to the
applications. Two main differences can be pointed out between an RTK and a GPOS. A
GPOS is typically a monolithic component where application developers have no control on
the subsystems they can “ship” with their application. RTKs are typically configurable items
that enable downsizing by cutting out in the kernel subsystems not used by the application at
hand. Another remarkable difference is the environment in which they are used. An GPOS,
due to its general purpose characteristics, and can be used for a wide range of applications
such as desktop computers used for word processing and similar uses or backend servers
running corporate applications or database servers. RTKs on the other end, are usually used

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-5

for embedded systems, many diskless, where the inter process communication and timing
issues are more important.

The Benchmark Target (BT) for an RTK dependability benchmark corresponds naturally to
an RTK. RTKs (as GPOSs) are used by the upper software layers through their API
(Application Programming Interface) that defines the set of services provided by the RTK. In
addition, the embedded application (and the RTK) requires a hardware platform and possibly
some additional libraries to run. All these “surrounding” system components influence the
Benchmark Target behaviour. The System Under Benchmark (SUB) defines then not only the
Benchmark Target but also the environment where it is used including as well a reference
application.

The dependability benchmark presented in this chapter is more specifically a robustness
benchmark. Robustness is one key dependability attribute that impacts the system property
we are accessing – determinism of response time. Robustness testing has been widely used to
assess COTS systems revealing deficiencies especially when its internal structure is unknown
(see [Laplante 1997], [Rodriguez et al. 2002], [Moreira et al. 2003] and DOT/FAA 2002]).
Robustness testing normally considers the system as a “black box” applying a set of test
values to its interface.

In this benchmark we focus on the timing robustness of the RTK with respect to erroneous
inputs provided by the application software via the API. The set of measures defined
characterise the timing behaviour of the RTK, especially in the case when it does not meet its
specifications.

The benchmark specification defines clearly the following items:

1. The dependability measures provided by the benchmark;

2. The system under benchmarking;

3. The experimental dimensions: workload, faultload and procedures.

The next subsections will address these items, while section 3.4 provides the details of a
prototype instantiating them.

3.3.2 Dependability measures

On assessing the predictability of the response time of a RTK system call there are two
remarkable issues:

• When a system call fails to execute within the nominal time, how much it
deviates from the specification?

• What is the likelihood that a specific RTK system call will fail to execute
within the nominal time? I.e. how many times can this happen.

The predictability of a RTK is then based on the following two measures:
• The Divergence (D), which represents the normalised difference between longest

measured execution time of a system call in presence of faults and the nominal

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-6

execution time of that function. The divergence is expressed in percents and gives a
measure of the impact or “cost” of the faults in the response time.

alno

alno

T
TTD
min

minmax −
=

The divergence is calculated individually for each system call and then the average is
computed to obtain a single Divergence value for the RTK.

• The Frequency of “out of boundaries” (F) corresponds to the number of cases a
system call execution took longer then the nominal time considering all executions.
The frequency is expressed in percents and represents the probability of a system call
not following is specification.

The frequency is calculated individually for each system call and then the average is
computed to obtain a single frequency of out of boundaries value for the RTK.

Based on the two previous measures, a predictability value is computed. The Predictability
(P) of a RTK is then the probability of a system call failing to execute within its specification
time associated with a penalty on the “size” of the average time delay.

)1(
)1(
D
FP

+
−= .

Annex 3-A presents a detailed specification of these measures on which any implementation
of the benchmark must comply.

3.3.3 System Under Benchmarking

The Benchmark Target (BT) of this benchmark is a Real-Time Kernel (RTK), which is a
small sized software component composed by a set of core functions common in an OS. It
offers a number of functions and procedures to manage, for instance, tasks, semaphores,
system memory, interrupts and signals, via its Application Programming Interface (API).

The System Under Benchmarking (SUB) is an onboard space system composed by several
modules defined as the Workload, The Real-Time Kernel and the Hardware Platform.
Furthermore, a Ground Segment Emulator (GSE), running on a different hardware platform,
emulates the control and monitoring done by system operators, providing the inputs to the
workload. Figure 3.2 depicts the SUB considered for this benchmark.

Figure 3.2: System Under Benchmarking

HW Platform

API
RTK kernel

BENCHMARK
TARGET
(RTK)

GSE Workload

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-7

The workload considered exercises a subset of normal control and data handling
functionalities used in common space systems and the GSE provides the required
commanding and monitoring functionality to exercise the workload and the benchmark target.

3.3.4 Experimental dimensions

This section defines the experimental dimensions of the benchmark, namely the workload, the
faultload, the benchmark setup and its procedure.

3.3.4.1 Workload

In the case of onboard space systems, there is no (widely) available performance benchmark
which could be adapted to the dependability benchmark requirements (as it happens for
instance with OLTP systems). A complete workload is then proposed/specified.

This workload should be representative of the typical applications, algorithms and
functionalities running on top of RTK in an onboard space system. One of the functionalities
normally included in almost all satellites and spacecrafts which require services from a RTK
component is the capability of scheduling telecommands for later execution. There are at least
two scenarios where the capabilities for the onboard execution of operations that have been
loaded in advance from the ground are useful [PUS 2003]:

• Those missions that perform operations outside of ground contact because of limited
ground station visibility or signal propagation delays;

• Those missions whose operations concept is to minimize the dependency on the
ground segment. Thus, a geostationary telecommunications or meteorological
mission can perform all of its routine operations in this manner, even though the
spacecraft is permanently in view of a ground station. This approach potentially
increases the availability of operational services or mission products, since the
continuous availability of the uplink is eliminated.

The onboard telecommand scheduling functionality will be used as abstraction for the
benchmark on real time kernel in onboard space systems.

The workload defined in this benchmark is an Onboard Scheduler (OBS) process based on
the onboard telecommand scheduling functionality derived from Packet Utilization Standard
([PUS 2003]). The purpose is to simulate the reception of telecommands, store and dispatch
them in accordance to their activation time.

The Onboard Scheduler (OBS) receives telecommands that are recorded to be executed at a
specified later time. Figure 3.3 shows the proposed architecture of this reference onboard
scheduler. The workload is divided into three major modules (Telecommand Reader,
Telecommand Storage and Dispatcher) defined in the following sub-sections. The OBS
exercises several kernel functionalities such as task handling, process synchronization,
message passing and timer. It receives telecommands from the input channel that are kept in
the Telecommand Storage until their release time when they are dispatched through the
output channel.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-8

Figure 3.3: Onboard Scheduler architecture

3.3.4.1.1 Telecommand Reader

The Telecommand Reader is responsible for receiving the telecommands to be scheduled. As
shown in Figure 3.3, Task A receives the incoming telecommands through the input channel
and stores them in an internal message queue. The queue must have a fixed size and its
accesses must be synchronized. If the message queue is full, the task(s) shall wait until a
message is removed from the queue. Having more than one reader task increases the
throughout in the input channel. Figure 3.4 presents a general activity diagram for this
module.

Message Queue

Limited and ordered list

Mutual exclusion

Dispatcher
 Telecommand Reader

Telecommand Storage

Timer

Trigge

 Task C

Reading / Writing

Telecommand

Task D

Routing Packets

Telecommand

 Execution

Reschedule Timer

Blocking reading

Message Queue

Blocking reading

Input

Output

On-Board Scheduler (OBS)

Task B

Reading / Writing

Task A
Receive incoming
Telecommands

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-9

Get telecommand
from input channel

Put telecommand
in the message

queue

Is Message Queue

Full?

Sleep

Wait for a
telecommand in

Input Channel

Telecommand Reader
queue syncrhonization

[no]

[yes]

Figure 3.4: Telecommand Reader Activity Diagram (Task A)

3.3.4.1.2 Telecommand Storage

Telecommand Storage is responsible for storing the telecommands in a way that allow a
quick access to the release time of each telecommand to be executed. The access for the
storage structure shall be synchronised and protected. A local semaphore shall be used to
accomplish this requirement.

Task B (in Figure 3.3) is responsible for retrieving the telecommands from the Telecommand
Reader queue and inserting them in the Telecommands Storage structure. Task B remains
blocked until a new TC is inserted in the message queue. A counter with the number of TCs
in the storage must be maintained and updated in each access to the Telecommand Storage.

Whenever a telecommand is inserted or retrieved from the storage, a Timer shall be reset to
the time of execution of the next telecommand to be released.

If a TC arrives and its execution time has already passed, it shall be released immediately and
the Timer shall be reset after its execution.

Finally, the Timer is in charge of triggering Task C (see Figure 3.3) which retrieves the
telecommands that are ready for execution and sends them to the Dispatcher.

Figure 3.5 presents the activity diagram for the Task B in the Telecommand Storage module
and Figure 3.6.presents the activity diagram of Task C.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-10

Get telecommand
from Telecommand

Reader

Store telecommand in
Telecomand Storage

Obtain Telecommand
Storage semaphore

Update Timer

Increase Number of
telecommands in

Telecommand Storage

Is the Storage Full?

Sleep

Release
semaphore

Wait for
telecommand in
Telecommand

Reader

Telecommand Reader
synchronization

Release
semaphore

[no]

[yes]

Figure 3.5: Telecommand Storage Activity Diagram (Task B)

Suspended
waiting for the

Timer

Get
telecommand

from
Telecommand

Storage

Put
telecommand in

Dispatcher
queue

Update Timer

Figure 3.6: Activity Diagram of Task C

3.3.4.1.3 Dispatcher

The Dispatcher is responsible for sending the telecommands through the output channel to a
specific instrument of the spacecraft (e.g. a camera, rover drill, etc.). It shall include a
message queue which access is both synchronised and protected. The Dispatcher may have
one or more tasks (Task D Figure 3.3) that retrieve telecommands from the queue and send
them through the output channel. This would permit to successfully dispatch of
telecommands to different destinations at the same time.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-11

3.3.4.1.4 Telecommands

The Ground Segment Emulator is responsible for providing input to the workload, thus
imposing a load on the Benchmark Target, as well as for receiving its outputs.

The input consists in a set of telecommands to be stored and scheduled for later execution.
This set of telecommands defines the execution profile of the workload and its duration.
Table 3.1 shows the time when the telecommands should be uploaded to the SUB and their
associated release times. The type of telecommands to be sent is not specified since the OBS
does not consider the actual command but only its release time.

Table 3.1: Set of telecommands

Delay between the
telecommands sent

(measured in milliseconds in
the GSE)

Release time

(measured in microseconds
from boot in SUB)

1000 100

500 150

200 170

100 180

100 190

100 200

100 210

200 230

1000 330

1000 430

1000 530

1000 630

1000 730

1000 830

100 840

100 850

100 860

100 870

1000 970

1000 1070

1000 1170

1000 1270

1000 1370

1000 1470

3.3.4.2 Fault model and Faultload

The fault model considered in this benchmark consists in corrupting a single parameter of a
system call at a time. The faults are inserted at workload level by mutation. Figure 3.7
illustrates the location of the inserted faults.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-12

Figure 3.7: Faultload location in SUB.

The parameter corruption consists in replacing a parameter with a test value from the set of
values defined in Table 3.2. Only one parameter is corrupted at a time. All system calls
having parameters and used in the workload implementation are corrupted during the
benchmark execution. Figure 3.8 shows an example of the corruption process.

Figure 3.8: Snippet of code with examples before and after Fault Insertion.

Ideally, all valid possible values for the parameter should be used as test values. Since this
would have a huge impact on the total benchmark execution time and many of the values
would have a similar impact, only a set of representative test values is considered from the
entire possible range.

The set of test values to use for each basic type includes typically the values 0, 1, -1 and the
type boundaries (minimum and maximum). In addition to the previous values, a set of N
representative values from the range of the basic type are used.

For unsigned, M bits wide, data types, with the range like [0 ; 2M - 1] the values Vi for i =
1..N are generated according to the formula (a). The values generated by the formula are
evenly spread among the range in a logarithmic scale that diversifies the generated
population. The values obtained are representative of each data type and repeatable.

)
)1(

(
2 +

×
= N

Mi

iV (a).

In order to have non-integer values, the expression

)1(+
×
N
Mi ,

is treated as real value in computation.

Normal code Corrupted code

(…)

TIMESTAMP1;

Function_X (a, b);

TIMESTAMP2;

(…)

(…)

TIMESTAMP1;

Function_X (0, b); /* Parameter a is corrupted */

TIMESTAMP2;

(…)

HW Platform

API
RTK kernel

Workload BENCHMARK
TARGET
(RTK)

Faults

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-13

For signed data types with the range like [-2M ; 2M - 1] half of test values are calculated with
the above formula and the other half of values is composed of the opposite numbers. The
generated test values should be rounded to the integer type if necessary.

Table 3.2 shows the set of test values defined for each basic data type.

Table 3.2: Test values used for each basic data type

Type Name Typical and Boundaries values used for each basic data
type

Other Values

Char 0, 1, 255

signed char 0, -1, 1, -128, 127

Int 0, -1, 1, -2147483648, 2147483647

unsigned int 0, 1, 4294967295

short int 0, -1, 1, -32768, 32767

unsigned short int 0, 1, 65535

Long 0, -1, 1, -9223372036854775808, 9223372036854775807

unsigned long 0, 1, 18446744073709551615

Pointers NULL1

Vi for i = 1..N
accordingly to the
formula (a).

Some system call parameters have a direct influence in its execution time. A simple example
is the function sleep where the execution time of the function is passed as parameter.
Inserting a fault in this parameter (e.g. MAX_INT) would increase dramatically the measured
execution time of the function in presence of faults. But this increase in the execution time is
actually the normal behaviour since it is the defined functionality. Thus, in order not to
wrongly characterise the timing behaviour of system calls such parameters must not be
subjected to faults.

3.3.4.3 Benchmark Setup

Three main elements compose the setup required to run the DBench-RTK benchmark (see
Figure 3.9):

• The System Under Benchmarking (SUB) running the Benchmark Target together
with the defined workload (see section 3.3.4.1).

• The Benchmark Management System (BMS) responsible for (i) uploading the
workload and the faultload into the SUB, (ii) controlling the benchmark execution
and (iii) storing the results.

• The Ground Segment Emulator (GSE) provides the workload running with the
necessary telecommands to be processed and receives the associated telemetry. The
GSE interacts with the workload (in the SUB) sending the set of telecommands, at
the predefined time, to be processed. When the telecommands are later executed the
GSE receives any telemetry sent by the SUB.

1 The only typical test value used for pointers is the NULL pointer. Other test values will also be generated

accordingly to the formula.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-14

Figure 3.9: Dench-RTK Benchmark Setup

3.3.4.4 Benchmark procedure

In this kind of embedded systems, the workload is compiled and linked together with the
RTK into a single memory image file that is executed in the target system. In some extent it
can be considered that the workload and the RTK are a single application.

The Benchmark Management System is responsible to control the overall benchmark process,
supervising the execution of all experiments. The application is always compiled and
uploaded to the target system before executed to ensure consistent steady state at the
beginning of each experiment. Upon uploading the workload the BMS signals the Ground
Segment Emulator to start sending the telecommands defined in the configuration file and
waits for the workload to complete its execution. The BMS then stores the collected
execution times, used later on to calculate the benchmark measures.

The execution time of a system call is collected every time it is executed in the workload
even when the fault is not applied in it. In this way we measure any effects of a potential
propagation of errors from one system call to another while getting also more statistically
meaningful results for each system call.

The benchmark is applied in three steps:

1. Execute the nominal workload (without faults).

In this step the BMS will upload and execute the workload without applying any
faults. Executing the workload without applying any faults but still collecting the
execution times of the system calls allows obtaining the nominal execution times of
every system call in the workload. These nominal execution times will set the basis
for comparison when computing the benchmark measures in the presence of a
faultload.

System behaviour; Measures

Benchmark

Management System
System Under Benchmarking

Workload, Faultload

Database

Measures

HW Platform

API
RTK

Workload
BENCHMARK
TARGET

Ground Segment

Emulator

TelemetryTelecommands

BMS

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-15

2. Execute the workload with faults.

In this step the BMS will execute the workload with faults. The BMS will corrupt
the parameters of every system call in the workload changing it by every test value
as defined in 3.3.4.2. BMS will mutate the workload source code applying one fault
at a time and then recompile the whole application before uploading to the target
system for executing. The number of possible parameter corruptions defines the
number of times that the workload is executed in this step. The system is restarted
after each execution.

As in the previous step, the execution time of all system call in the workload is
collected and stored to be accounted for when calculating the benchmark measures.

3. Compute the benchmark measures.

After executing all experiments, the BMS computes the benchmark measures as
defined in section 3.3.2 and Annex 3-A.

3.4 Benchmark Prototype

This section presents one implementation of the Dependability Benchmark for the space
domain defined in the previous section. The prototype includes both the implementation of
the workload, the faultload and the set of procedures necessary to execute the benchmark.
The main goal of the prototype is to show the feasibility of the dependability benchmark
specification presented.

In order to follow the specification, the implementation must cover all topics addressed by the
specification instantiating them in a concrete case. Namely, the system under benchmarking
must be put together for the selected benchmark target; the workload must be implemented or
customized; and a method to apply the faultload must be implemented. Additionally the
benchmark management system must be implemented to automate the procedures defined in
the specification and compute the benchmark measures – divergence, frequency of out of
boundaries and predictability.

3.4.1 Benchmark Configuration

This section describes the configuration details of the prototype. The selected benchmark
target, the setup and the automation procedures used are described.

3.4.1.1 Benchmark Target (BT) Description

The Benchmark Target (BT) selected for this prototype is a RTK, named RTEMS (Real-Time
Executive for Multiprocessor Systems version 4.5.0) [OAR 2000], customised for the
SPARC-ERC32 space environment processor.

RTEMS provides a high performance environment for embedded critical and military
applications with the following features:

• Multitasking capabilities;

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-16

• Homogeneous and heterogeneous multiprocessor systems support;

• Event-driven, priority based, pre-emptive scheduling;

• Optional rate monotonic scheduling;

• Intertask communication and synchronisation;

• Priority Inheritance mechanisms;

• Responsive interrupt management;

• Dynamic memory allocation;

• High level of user configurability.

The internal architecture for RTEMS can be viewed as a set of layers that work closely with
each other to provide the set of services to the real time applications. The executive interface
presented to the application is formed by directives (RTEMS API Calls) grouped into logical
sets called resource managers, as presented in Figure 3.10.

Figure 3.10: RTEMS Classic API Internal Architecture

RTEMS 4.5.0 provides several APIs for real time application programming. The Classic API
was selected and used by the workload. The Classic API is the native and older RTEMS API.
Each manager is responsible for a specific feature, e.g.:

• The Initialization Manager is responsible for initiating and shutting down RTEMS.

• The Task manager provides a comprehensive set of directives to manage and
administer tasks;

• The Timer Manager provides support for timer facilities;

• The Semaphore Manager provides support for synchronisation and mutual exclusion
capabilities;

• The Message Manager provides communication and synchronisation facilities using
RTEMS message queues;

• The Signal Manager provides the features required for asynchronous
communication;

• The Partition Manager provides facilities to dynamically allocate memory in fixed-
size units;

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-17

The RTEMS version 4.5.0 is distributed via anonymous ftp. This release can be found in
ftp://ftp.oarcorp.com/pub/rtems/releases/4.5.0. The complete source code and documentation
can be found in www.rtems.com.

The list of API functions actually used in this workload implementation is presented in the
next section.

3.4.1.2 Benchmark Setup

Figure 3.11 presents the instantiation used of the general benchmark setup presented in Figure
3.9 (page 3-14). The benchmark setup as three main components: the System Under
Benchmarking, the Ground Segment Emulator and the Benchmark Management System.

The hardware platform considered in the System Under Benchmarking is based on an
ERC32 processor. ERC32 is a radiation hardened processor based on the SPARC architecture
developed specifically to be used in the space environment. In this specific case the hardware
platform was simulated using a Sparc-ERC32 simulator2. The benchmark target runs on this
hardware platform together with the onboard scheduler workload detailed in the next section.

The Benchmark Management System was implemented using Xception™ tool
[XCEPTION]. Xception™ tool was used to automate the execution of the experiments and to
control the process of fault insertion.

Xception™ uses three scripts to automate the experiments:
• Build script used to compile the workload and build it together with the RTK into an

image file to be executed in the target system.

• Input Generator used to signal the Ground Segment Emulator that the target system
has been reset and can start sending the telecommands.

• Output Collector used to extract the execution times from the workload output and
store them in the database.

The Ground Segment Emulator emulates the ground control sending the predefined set of
telecommands to the SUB and receiving the telemetry provided by it.

2 The simulator used is embedded in sparc-rtems-gdb, a flavoured version of the GNU Debugger.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-18

Figure 3.11: Benchmark Configuration

All processes were running on a single machine whose characteristics are summarized in
Table 3.3.

Table 3.3: Test Machine Configuration

vendor_id : GenuineIntel

cpu family : 6

Model : 5

model name : Pentium II (Deschutes)

cpu MHz : 400.915

cache size : 512 KB

RAM Mem : 256 MB

OS running : Linux kernel 2.4.19-4GB SuSe 8.1

database : PostgreSQL 7.2.2

compiler : cross-compiler sparc-ERC32-rtems v2.95.2 19991024 (release)

ERC32 Sim. : 4.18 (configured for SPARC-ERC32 target)

Injection tool : Xception™ 2.0 (with ERC32-RTEMS Software plug-in)

3.4.2 Workload

The workload implements in the C language the OnBoard system Scheduler (OBS) as defined
in the specification.

The workload is a synchronized multitasking application with six concurrent tasks that
exercise several RTEMS system calls. Apart from the modules identified in the workload
specification – Telecommand Reader, Telecommand Storage and Dispatcher– it has one

PostgreSQL
Xception™

Input
Generator

Output
Collector

Build

Telemetry
(Measurements)

Ground Segment

Emulator

Telecommands

Benchmark Management System

SUB

Sparc-ERC32 SIM

API
RTK

OBS

Ground Segment Emulator

Scripts used

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-19

additional module used for the workload initialisation. All modules are described in the
following subsections including the identification of the RTEMS system calls exercised by it.

3.4.2.1 Initialization Procedures

The main and init tasks are responsible for the initialization of all other tasks, system
memory, structures, objects and variables used in the workload. Both tasks are deleted from
the system after the initialisation.

In order to have concurrent tasks, all processes are created with the same priority.

The Telecommand Storage is implemented using a partition with 8 slots. Pointers to each
buffer are stored in an array and each message queue is created with a size of 12
telecommand structures.

Table 3.4 lists the kernel functions used by the initialization tasks.

Table 3.4: RTEMS system calls used in the Initialization process

API Name Manager

rtems_task_create Task

rtems_task_start Task

rtems_task_set_priority Task

rtems_task_mode Task

rtems_clock_set Clock

rtems_timer_create Timer

rtems_partition_create Partition

rtems_partition_get_buffer Partition

rtems_semaphore_create Semaphore

rtems_semaphore_obtain3 Semaphore

rtems_semaphore_release Semaphore

rtems_message_queue_create Message

3.4.2.2 Telecommand Reader Module

Telecommand Reader receives telecommands sent by the GSE, temporally stores them in a
queue and then sends them to the Telecommand Storage.

A single task for receiving telecommands from the input channel was implemented.

This module uses several RTEMS functions as shown in Table 3.5.

3 This function call was used by the workload but was not measured since its response time depends on other

system variables.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-20

Table 3.5: RTEMS system calls used in the Telecommand Reader module

API Name Manager

rtems_task_set_priority Task

rtems_task_mode Task

rtems_task_set_priority Task

rtems_timer_fire_after Timer

rtems_timer_cancel Timer

rtems_semaphore_obtain Semaphore

rtems_semaphore_release Semaphore

rtems_message_queue_send Message

rtems_message_queue_get_message_pending Message

3.4.2.3 Telecommand Storage Module

The Telecommand Storage module is responsible for storing the telecommands in a defined
structure. The storage was implemented using RTEMS partitions.

A local binary semaphore was used to synchronise and protect the accesses to the storage.
The counting of the number of TC in the system is protected by binary semaphores, which are
obtained in each update, insertion or removal of TCs.

Whenever a telecommand is inserted or retrieved from the storage, the system timer is reset to
the time of execution of the next telecommand to be launched.

The RTEMS functions exercised in this module are listed in Table 3.6.

Table 3.6: RTEMS system calls used in the Telecommand Storage module

API Name Manager

rtems_task_resume Task

rtems_task_set_priority Task

rtems_task_mode Task

rtems_clock_get_time Clock

rtems_timer_fire_after Timer

rtems_timer_cancel Timer

rtems_semaphore_release Semaphore

rtems_message_queue_send Message

rtems_message_queue_receive Message

rtems_message_queue_get_message_pending Message

3.4.2.4 Dispatcher Module

The Dispatcher module includes a message queue which access is both synchronised and
protected.

A special ending telecommand (with the command “END”) is used (i) to force the OBS to
clean up the system, deleting all objects used and returning the used memory, and (ii) to
terminate its execution.

The RTEMS functions exercised in this module are described in Table 3.7.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-21

Table 3.7: RTEMS system calls used in the Dispatcher module

API Name Manager

rtems_task_set_priority Task

rtems_task_mode Task

rtems_semaphore_release Semaphore

rtems_message_queue_receive Message

rtems_message_queue_get_message_pending Message

3.4.2.5 Time Measurement

The execution time of system calls was measured by collecting a timestamp just before and
after calling the function. The associated timer was initialised just before collecting the first
timestamp.

In order to eliminate influences on the results by other running tasks, pre-emption was
avoided during the measurement process. This was accomplished taking into account three
actions that assure that only a single task is inside the measuring block at a time and that this
task will not be pre-empted:

• A Semaphore was used;

• The task’s priority was raised;

• The task’s execution mode was changed in order not to be pre-empted, to avoid
asynchronous signals and to avoid time slicing between tasks.

3.4.3 Faultload

The test values for each data type were used as specified. Additionally 100 test values for
each data type were computed applying the formula provided in the benchmark specification.

The test values to use for each data type are pre-defined in a configuration file. Another
configuration file is used to describe the signatures of system calls to exercise. Using these
two configuration files as input, an automated procedure parses the workload source code
looking for the selected system calls. For each system call found, the automated procedure
creates mutants changing the source code replacing its parameters by every test value defined
in the configuration file for the parameter type.

Each mutant was then compiled, built and executed.

3.4.4 Experiments and results

The faultload applied to the workload implementation generated a total 5200 different faults
(5200 mutants). Each fault was applied one by one in independent executions of the
workload. When analysing the results, the faults with direct influence in the execution time of
the system call were discarded leading to 2622 workload executions being accounted for the
results.

The results should be read bewaring that:
• The Divergence range is from 0% (best) to ∝% (worst)).

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-22

• The Frequency range if from 0% (best) to 100% (worst)).

• The Predictability range is from 0.0 (worst) to 1.0 (best)).

3.4.4.1 Benchmark Results

The benchmark results obtained computing the measures defined in the specification are
presented in Table 3.8.The predictability value suggests that the RTK under analysis has a
high degree of determinism.

Table 3.8: Benchmark Results for RTEMS

 Divergence Frequency Predictability

Target System 16.7 % 0.9 % 0.8492

More detailed information including the preliminary results leading to these final results can
be found in Annex 3-B.

3.4.4.2 Effort needed and Benchmark duration

The effort used for implementing the prototype was about 4 man month. This includes the
time needed to implement the workload (including the Ground Segment Emulator), the
faultload and the scripts to automate the benchmark execution process using Xception. The
time needed to run the benchmark and analyse the results is also included.

Customizing the Customizing the benchmark prototype to a new system is estimated to take 1
man month.

The benchmark execution time was about 2 days (≈ 44 hours) executing continuously. This
was calculated taking the gold run execution time plus the average execution time with faults
(≈ 30.5 seconds) multiplied by the total number of faults injected (5200).

The total benchmark execution time can be customized to the requirements and/or limitations
of the benchmark user. This customization is done by changing the number of test values for
each data type. Decreasing the number of test values for each data type (reducing the number
N in formula (a), section 3.3.4.2) impacts directly on the total number of faults generated and,
thus, on the time required to execute the benchmark. It also impacts on the representativeness
of the faultload.

3.5 Benchmark Validation

Validating a benchmark is ensuring that the set of properties defined in Chapter 1 are verified
both by the benchmark specification and its implementation(s). The properties to be verified
are the representativeness, repeatability and reproducibility, portability, non-intrusiveness and
scalability.

Since only one implementation of the benchmark was performed, some of their properties
were not verified and claims that such properties are fulfilled are presented instead.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-23

The next sections discuss these properties.

3.5.1 Representativeness

Real-time applications in general, and in the space domain in particular, have (hard) deadlines
to meet and their functionality is dependent on the services provided by the underlying real-
time kernel. The measures provided by the benchmark allow characterisation and comparison
of the timing behaviour of an RTK in presence of faults.

The workload selected – an Onboard Scheduler – implements a functionality that is present in
almost every spacecrafts. Furthermore, its specification is based upon a European standard. .

Critical embedded systems are usually thoroughly verified and tested before deployment but
even in this type of systems around 10 software defects per 1000 lines still remain in it after
deployment [Regan and Hamilton 2004]. The faultload specified emulates software defects of
the same type and nature of residual faults available in RTK COTS [Kropp et al. 1998].

3.5.2 Reproducibility and Repeatability

This dependability benchmark is composed of a set of experiments. In each experiment the
system is reset and the application is uploaded again to it. This makes the experiments
independent from each other. Only a single fault is impacted on the system per each
experiment, thus facilitating reproducibility.

3.5.3 Portability

A dependability benchmark is portable if it can be easily applied to different benchmark
targets. Every item in the benchmark specification is defined in a general way without relying
on details of any specific system.

The workload definition does not refer to any peculiarities of any RTK, thus being able to be
implemented for different RTKs.

The faultload definition is also generic and portable. Every parameter of every system call
used in the workload implementation is to be corrupted using a set of test values. The test
values are defined referring to the basic data type with counterparts in every system and
programming language.

3.5.4 Non-intrusiveness

In these types of embedded systems the workload and the kernel are compiled together into
one single image file that is burned in an EPROM and placed in (or uploaded to) the target
system. The faults are inserted at the workload mutating the source code before compiling it
and then the workload run freely after being uploaded.

The Benchmark Target (the RTK) is never modified.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-24

3.5.5 Scalability

The benchmark specification has several characteristics that allow scaling.

The size of the queues in the workload components can vary accordingly to the number of
tasks interacting with the input/output channels. Also the number and frequency of
telecommands sent to the target system can be adapted for systems with different sizes.

The number of test values for each basic data type can also be adapted depending on the
system size and restrictions. The number of test values for each basic data type impacts
directly on the number of faults to insert and on the total time required to execute the
benchmark.

3.6 Conclusions

COTS Real-Time Kernels are increasingly used in embedded systems and in particular in the
space domain. The applications running on these systems depend on the services being
provided correctly and within the specified time constraints.

This chapter presented the specification of a dependability benchmark for assessing the
timing behaviour of Real-Time Kernel service calls. The benchmark is targeted at space
domain systems and addresses mainly the robustness of the RTK with respect to faulty
applications.

An abstraction of a spacecraft was used in the definition of the benchmark workload. In this
abstraction, a spacecraft is defined by a functionality found in almost every control and data
handling unit – an Onboard Scheduler.

The fault model used defines a set of test and boundary values to be applied to the parameters
of RTK service calls. The type of faults considered is well-known in the domain of robustness
and interface testing but used here with a different goal [Kropp et al. 1998]. The fault model
is focused on characterization of the timing behaviour of the service calls in presence of
faults.

A prototype of the benchmark was implemented and presented in section 3.4 along with the
results obtained. This prototype demonstrated the feasibility of the benchmark specification
showing that it can be successfully implemented. The prototype helped on the verification of
the benchmark properties, namely the representativeness and non-intrusiveness.

Both the benchmark and the implementation can be improved specially regarding the required
number of test values to use for each basic data type that impacts greatly the execution time
of the benchmark. Implementation of the benchmark on another Target System is required to
further benchmark validation.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-25

Annex 3-A Detailed Measures definition

This annex presents a detailed and formal definition of the measures used in this
dependability benchmark.

Please note that system call is often referred to as function throughout this annex.

3-A.1 Notation

All definitions in this subsection concerns the data collected during the execution of the
benchmark.

All execution times collected are denoted as type
indexT with type representing the different kind of

executions (nominal and with faults)4 and index describing the circumstances (system call
and its specific execution). Execution time is represented in time units (seconds, milliseconds,
microseconds or nanoseconds as necessary).

For every system call X of the workload there will be alno
XN

min (from step 1 of section 3.3.4.4)

execution times collected denoted as alno
mXT
min

, (for m = 1.. alno
XN

min).

For every system call X of the workload there will be fault
XN (from step 2 of section 3.3.4.4)

execution times collected denoted as fault
kXT , (for k = 1.. fault

XN).

The exact number of execution times for each system call depends on the execution profile of
the workload.

3-A.2 Special cases

Whenever the workload execution is aborted and it can be proved that a specific system call
caused the system to hang, this system call is assigned, as execution time, a time equal to the
workload execution time.

3-A.3 Measures for individual system calls

The nominal execution time of each system call X present in the workload is obtained
considering the maximum value collected during the first step of the benchmark:

()alno
mXm

alno
X TMaximumT min

,
min

max, = .

4 When the workload is executed without inserting any faults during its execution, the collected execution time

is considered of type nominal. If a fault is inserted during the workload execution, the collected execution

time is considered of type fault.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-26

The execution time in presence of faults of each system call X present in the workload is
obtained from the maximum value collected:

()fault
kXk

fault
X TMaximumT ,max, = .

The benchmark measures are computed from these values.

The Divergence of each function X is denoted as DX. Divergence is expressed in percent and
represents the difference between the longest measured time duration of function X in the
presence of faults and its nominal execution time. Thus, it is calculated as:

alno
X

alno
X

fault
X

X T
TT

D min
max,

min
max,max, −

= .

If DX is less then zero after the calculation, then DX is assigned the value 05.

The Frequency of out of boundaries execution of each function X is denoted as FX.
Frequency is expressed in percent and represents the percentage of cases that the execution of
a function in presence of faults is longer than its nominal execution time:

fault
X

X
X N

S
F = ,

for { }alno
mX

fault
kX

fault
kXX TTTS min

,,, : >= ; k = 1.. fault
XN .

The Predictability PX, used as single summary result for each function X, is defined as the
proportion between the area of predictable executions and the area of all executions with
faults (see Figure 3.12). These areas are pointed as rectangles with the execution time pointed
as height and the number of executions pointed as length.

5 The execution time of a function with an erroneous parameter may be shorter than its nominal execution

time. This may occur when the function is not executed and an error code or an exception is returned after

some validity checks.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-27

Figure 3.12: Predictability Model Definition

)1(
)1(

|)|(

__

|)|(

|)|(
_.__
_.__

min
max,

max,

min
max,

max,

max,

min
max,

x

x

alno
X

fault
X

fault
X

X
fault
X

alno
X

fault
X

fault
X

X
fault
X

fault
X

fault
X

X
fault
X

alno
X

D
F

T
T

N
SN

timesthestricting

T
T

N
SN

NT
SNT

Brectofarea
ArectofareaPx

+
−

=

=

−

=

=≅

−

=

=
×

−×
==

Thus, the Predictability is given as:

)1(
)1(

x

x
x D

FP
+
−= .

The value of PX is in range [0 .. 1] and the more near of 1 PX is, the more predictable a
function X is.

3-A.4 Benchmark measures

The Divergence D is calculated as the average of the computed divergences of individual
system calls:

D = Average for all X (DX).

0

Predictable
executions

Time of execution

|SX|

fault
XN

X
fault
X SN −

alno
XT

min
max,

fault
XT max,

All executions
Number of executions of

with faults

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-28

The Frequency F is calculated as the average of the computed frequency of individual system
calls:

F = Average for all X (FX).

The Predictability P evaluates the determinism of the response time and it is calculated as:

)1(
)1(

D
F

P
+
−

= .

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-29

Annex 3-B Detailed results obtained

This annex presents the benchmark results by manager and directive. The number of
measurements is different for each function because it depends on the execution profile of the
workload.

The results should be read understanding that:
• The Divergence range is from 0% (best) to ∝% (worst)).

• The Frequency range is from 0% (best) to 100% (worst)).

• The Predictability range is from 0.0 (worst) to 1.0 (best)).

Table 3.9 summarises the results obtained by each manager while Figure 3.13 depicts
graphically the predictability of each manager.

Subsequent sections present the results obtained for each directive by manager.

Table 3.9: Benchmark results for RTEMS managers

Managers Total number of
measurements Divergence Frequency Predictability

Timer Manager 118398 24.98 % 3.02 % 0.776

Task Manager 2584193 22.94 % 7.2e-5 % 0.8134

Partition Manager 25151 0 % 0 % 1

Message Manager 157068 6.53 % 0.44 % 0.9346

Semaphore Manager 197636 44.57 % 0.74 % 0.6866

Clock Manager 91509 1.19 % 1.19 % 0.9765

0

0,5

1
Timer Manager

Task Manager

Partition Manager

Message Manager

Semaphore Manager

Clock Manager

Figure 3.13: Managers response time analysis

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-30

3-B.1 Timer Manager

Four functions from the Timer Manager where subject to evaluation. Table 3.10 presents the
values obtained for this manager.

Table 3.10: Benchmark results for the RTEMS Timer manager

Number of

Measurements Divergence Frequency Predictability

Timer Manager 118398 24.98 % 3.02 % 0.7760

Function call

rtems_timer_fire_after 57799 1.82 % 1.7e-3 % 0.9821

rtems_timer_cancel 57885 85.71 % 1.7e-3 % 0.5385

rtems_timer_delete 828 7.41 % 0.24 % 0.9288

rtems_timer_create 1886 5.00 % 11.82 % 0.8398

3-B.2 Task Manager

Five function calls were tested in the Task Manager (see: Table 3.11).

Table 3.11: Benchmark results for the RTEMS Task manager

Number of

Measurements Divergence Frequency Predictability

Task Manager 2584193 22.94 % 7.2e-5 % 0.8134

Function call

rtems_task_start 9975 0 % 0 % 1

rtems_task_delete 3563 0 % 0 % 1

rtems_task_create 9979 0 % 0 % 1

rtems_task_mode6 1536306 112.12 % 2.6e-4 % 0.4714

rtems_task_set_priority 1024370 2.59 % 9.8e-5 % 0.9748

3-B.3 Partition Manager

Table 3.12 presents the results obtained for the Partition Manager.

Table 3.12: Benchmark results for the RTEMS Partition manager

Number of

Measurements Divergence Frequency Predictability

Partition Manager 25151 0 % 0 % 1

Function call

rtems_partition_get_buffer 15143 0 % 0 % 1

rtems_partition_delete 916 0 % 0 % 1

rtems_partition_create 1969 0 % 0 % 1

rtems_partition_return_buffer 7123 0 % 0 % 1

6 Both rtems_task_mode and rtems_task_set_priority functions have a higher number of executions because

they are also used in the each measurement process.

DBench Dependability Benchmark for Real Time Kernels in Onboard Space Systems

3-31

3-B.4 Message Manager

The Message Manager results are presented in Table 3.13.

Table 3.13: Benchmark results for the RTEMS Message manager

3-B.5 Semaphore Manager

Table 3.14 shows the results obtained for the Semaphore Manager.

Table 3.14: Benchmark results for the RTEMS Semaphore manager

Number of

Measurements Divergence Frequency Predictability

Semaphore Manager 197636 44.57 % 0.74 % 0.6866

Function call

rtems_semaphore_release 187843 116.67 % 7.5e-3 % 0.4615

rtems_semaphore_delete 3302 13.33 % 0.3 % 0.8797

rtems_semaphore_create 6491 3.7 % 1.91 % 0.9459

3-B.6 Clock Manager

The Clock Manager results are presented in Table 3.15.

Table 3.15: Benchmark results for the RTEMS Clock manager

Number of

Measurements Divergence Frequency Predictability

Clock Manager 91509 1.19 % 1.19 % 0.9765

Function call

rtems_clock_set 2264 2.38 % 2.39 % 0.9534

rtems_clock_get 89245 0 % 0 % 1

Number of

Measurements Divergence Frequency Predictability

Message Manager 157068 6.53 % 0.44 % 0.9346

Function call

rtems_message_queue_create 4134 1.89 % 0.85 % 0.9732

rtems_message_queue_get_number_pending 62279 0 % 0 % 1

rtems_message_queue_receive 27436 0 % 0 % 1

rtems_message_queue_delete 2037 16.22 % 1.33 % 0.8491

rtems_message_queue_send 61182 14.55 % 6.5e-3 % 0.873

