

Chapter 2

Dependability Benchmark for General
Purpose Operating Systems

Abstract

This chapter presents a dependability benchmark for general-purpose operating systems
(OSs). The benchmark is defined through the specifications of its main components. The
specifications are implemented in the form of a benchmark prototype. The important novelty,
as regards OS dependability benchmarking, is threefold. First, it lies on a comprehensive and
structured set of measures: outcomes are considered both at the OS level and at the
application level. Second, these measures include not only robustness measures (e.g., the
distribution of the observed outcomes for the OS and the application), but also related
temporal measures in the presence of faults (e.g., OS reaction time and restart time). Finally,
we are using a realistic workload (namely, TPC-C client), instead of a synthetic workload.

The benchmark prototype is used to compare the dependability of three operating systems
(Windows NT4, Windows 2000 and Windows XP) with respect to erroneous behaviour of
the application layer. The results show a similar behaviour of the three OSs with respect to
robustness and a noticeable difference in OS reaction and restart times (Windows XP has the
shortest reaction and restart times). They also show that the application state (mainly the
hang and abort states) significantly impacts the restart time for the three OSs.

DBench Dependability Benchmark for General Purpose Operating Systems

2-2

2.1. Introduction

System developers are increasingly resorting to off-the-shelf operating systems (commercial
or open source), even in critical application domains. However, any malfunction of the
Operating System (OS) may have a strong impact on the dependability of the global system.
Therefore, it is important to make available information about the OS dependability, despite
the lack of information available from its development.

The aim of our OS dependability benchmark is to provide results that objectively
i) characterize qualitatively and quantitatively the OS behaviour in the presence of faults and
ii) evaluate performance-related measures in the presence of faults. These results can help a
system integrator in selecting the most appropriate OS, based on the benchmark measures
evaluated, in complement to other criteria (e.g., performance, maintenance, etc.). The
benchmark is entirely based on experimentation on the OS.

Several relevant attempts were already proposed to help characterize the failure modes and
robustness of software executives. A comprehensive analysis of the issues linking robustness
and dependability can be found in [Mukherjee and Siewiorek 1997]. The executives targeted
in these studies encompass real time microkernels [Chevochot and Puaut 2001; Arlat et al.
2002], general purpose OSs [Tsai et al. 1996; Koopman and DeVale 1999], as well as
CORBA middleware implementations [Pan et al. 2001; Marsden et al. 2002]. Results
concerning the robustness with respect to faults in device drivers can be found in [Durães and
Madeira 2002] and in [Albinet et al 2004]. The work reported in [Shelton et al. 2000]
specifically addressed the robustness of the Win32 API as is the case for the proposed
benchmark prototype.

The important novelty, as regards OS dependability benchmarking, that is provided by the
work reported here is threefold. First, it lies on a comprehensive and structured set of
measures: outcomes are considered both at the OS level and at the application level. Second,
these measures include not only robustness measures (e.g., the distribution of the observed
outcomes for the OS and the application), but also related temporal measures in the presence
of faults (e.g., OS reaction time and restart time). Finally, we are using a realistic workload
(namely, TPC-C client), instead of a synthetic workload.

The remainder of the chapter is organized as follows. Section 2.2 gives an overview of the
benchmark. Sections 2.3 and 2.4 specify respectively the benchmark measures and the
experimental dimensions. Section 2.5 describes a particular prototype for Windows family.
Section 2.6 presents some results related to the comparison of three OSs namely Windows
NT4, Windows 2000 and Windows XP, obtained using this prototype. Section 2.7 is devoted
to the validation of the benchmark while Section 2.8 concludes the chapter. Annex 2-A
provides sensitivity analysis related to the faultload selection and Annex 2-B shows how the
benchmark measures can be refined, based on complementary measures.

DBench Dependability Benchmark for General Purpose Operating Systems

2-3

2.2. Dependability Benchmark Overview

An OS can be viewed as a generic software layer that virtualises and manages all aspects of
the underlying hardware. The OS provides i) basic services to the applications, through an
Application Programming Interface, API, (e.g., Win32 for Windows OSs), and
ii) communication with peripherals devices via device drivers.

For an OS dependability benchmark, the Benchmark Target (BT) corresponds to the OS.
However, for the BT to be assessed, it is necessary to run it on top of a hardware platform
and to use a set of libraries such as device drivers. Thus, the BT along with the hardware
platform and libraries necessary to run it under the benchmark execution profile form the
System Under Benchmarking (SUB). Although, in practice, the benchmark results obtained
characterise the SUB (e.g., the OS reaction and restart times are strongly dependent on the
underlying hardware), for clarity purpose we will state that the benchmark results
characterise the OS.

The OS dependability benchmark presented in this chapter is a robustness benchmark
[Kalakech et al. 2004]. Robustness is defined as the degree to which a system operates
correctly in the presence of exceptional inputs or stressful environmental conditions.
Robustness can thus be viewed as an indication on the OS capacity to resist/react to faults
induced by the applications running on top of it, or originating from the hardware layer or
from device drivers. We put emphasis on the OS robustness as regards application erroneous
behaviours, more precisely, with respect to possible erroneous system calls provided by the
application software to the OS via the API. These erroneous system calls result from
corrupted parameters, including invalid parameters, in system calls. It is worth mentioning
that for sake of conciseness such erroneous system calls are shortly referred to as faults in
this chapter.

The proposed benchmark addresses the user perspective, i.e., it is primarily intended to be
performed by (and to be useful for) someone or an entity who has no in depth knowledge
about the OS. The benchmark results are aimed at significantly improving her/his knowledge
about its behaviour in presence of faults and comparing alternative OSs. In practice, the user
may well be the developer (or the integrator) of a system including the target OS as a COTS
component. What is important is that the OS is considered as a “black box” and accordingly,
the source code does not need to be available. The only required information is the
description of the OS in terms of system calls (in addition of course to the description of the
services provided by the OS).

We specify a full set of benchmark measures. Some of them characterize the OS behaviour in
the strict sense, while some others provide information on the impact of the fault as perceived
by the executed workload. As users may be only interested in characterizing the OS
behaviour in the strict sense, the benchmark implementation should make it possible to
simply ignore some measures and thus not to record the associated measurements.

The benchmark is defined so that the workload executed on the OS could be any performance
benchmark workload (and, more generally, any user tailored application) intended to run on

DBench Dependability Benchmark for General Purpose Operating Systems

2-4

top of the benchmarked OS. The specification and the prototype example we have developed
use TPC-C client [TPC-C 2002] as a privileged workload.

The specifications of the benchmark must define clearly the following items:

1) The benchmark measures to be evaluated.

2) The benchmark experimental dimensions (i.e., the workload, faultload and the
measurements to be performed on the system).

3) The set-up and related implementation issues required for developing and running a
benchmark prototype.

It is clear that these items are not totally independent from each other. However, for practical
reasons, in the subsequent sections, we address them separately: Sections 2.3 and 2.4 will
cover the specifications of the measures and experimental dimensions, while the benchmark
prototype implemented according to these specifications will be described in Section 2.5.

2.3. Benchmark Measures

Erroneous system calls are provided to the OS through the API. Their consequences on the
OS behaviour are deduced from the OS outcomes that are complemented by the workload
outcomes. Measures defined from the OS outcomes characterise the OS behaviour in the
strict sense, while the measures at the workload level provide information on the impact of
the OS behaviour on the state of the application. Measures defined from both outcomes allow
for a comprehensive description of the consequences of erroneous system calls.

We will first define the OS benchmark measures then address measures related to the
combined behaviour of the OS and the workload.

For each of them, two classes of measures are considered: i) robustness measures, concerning
the qualitative and quantitative behaviour in the presence of faults and ii) temporal measures
in the presence of faults standing for OS reaction time, system restart time and workload
execution time.

2.3.1. OS Measures

We first define the states of the benchmarked OS after execution of the corrupted system call.
Then, we define the related robustness measure before describing the temporal measures.

After execution of a corrupted input, the OS is in one of the states defined in Table 2.1.

• SEr corresponds to the case where the OS generates an error code that is delivered to
the application.

• SXp: corresponds to the case where the OS issues an exception. Two kinds of
exceptions can be distinguished depending on whether it is issued during the
application software execution (user mode) or during execution of the kernel software
(kernel mode). In the user mode, the OS processes the exception and notifies the

DBench Dependability Benchmark for General Purpose Operating Systems

2-5

application (the application may or may not take into account explicitly this
information). However, for some critical situations, the application is automatically
aborted by the OS. An exception in the kernel mode is automatically followed by a
panic state (e.g., blue screen for Windows and oops messages for Linux). Hence,
hereafter, the latter exceptions are included in the panic state and the term exception
refers only to user mode exceptions.

• SPc: In the panic state, the OS is still “alive” but it is not servicing the application. In
some cases, a soft reboot is sufficient to restart the system.

• SHg: In the hang state, a hard reboot of the OS is required.

• SNS: In the no-signalling state, the OS does not detect the presence of the erroneous
parameter. As a consequence, it accepts the erroneous system call and executes it. It
may thus abort, hang or respond to the application whenever such a response is
expected from it. However, the response might be erroneous or correct. For some
system calls, the application may not require any explicit response, so it simply resumes
execution after issuing the system call.

SNS can be characterized by the fact that none of the previous outcomes (SEr, SXp,
SPc, SHg) is observed.

Table 2.1: OS outcomes

SEr An error code is returned

SXp An exception is raised, processed and notified to the application

SPc Panic state

SHg Hang state

SNS None of the above situations is observed (No-signalling state)

Remarks

• Panic and hang outcomes are actual states, as they can last for a while. Conversely, SEr
and SXp characterize only events. They are easily identified when an error code or a
user exception notification are provided by the OS.

• It could happen that several error codes or/and exceptions are generated successively
during a single run of the workload. Accordingly several options can be considered for
categorizing these runs [Rodríguez et al. 2002]. In the proposed benchmark, the
outcomes are categorized according to the first event. If needed, further refinement of
the outcomes can be made according to the actual error or exception reported.

2.3.1.1. OS Robustness

A benchmark campaign is composed of a series of independent runs (referred to as
experiments). Each run consists in executing the workload with a corrupted system call. The

DBench Dependability Benchmark for General Purpose Operating Systems

2-6

robustness measure, POS, is defined as the percentages of experiments leading to any of the
outcomes “S*” in Table 2.1.

The OS robustness, POS, is thus a vector composed of 5 elements.

2.3.1.2. OS Reaction Time

This measure corresponds to the time for the OS to react to a system call in presence of
faults, either by notifying an exception or by issuing an error code or by executing the
required instructions (the result could be correct or not)..

Also, the response time in the presence of faults can be evaluated with respect to each
outcome of Table 2.1. Let these times be denoted respectively tSEr, tSXp and tSNS. They are
counted from the instant where the modified system call is provided to the OS, up to the issue
of the corresponding event by the OS, i) an error code return, ii) an exception notification,
and iii) a response to a system call.

Let texec be the reaction time in the presence of fault and τexec the average reaction time in
absence of faults.

2.3.1.3. OS Restart Time

 The duration of a restart is a very important measure for the designers of critical applications
because during this time the system is unavailable. Although under nominal operation, the
OS restart time is almost deterministic, it may significantly be impacted by the corrupted
system call. The OS might need additional time to make the necessary checks and recovery
actions, depending on the impact of the fault being applied.

Let tres be the restart time in the presence of fault and τres the average restart time in absence
of faults.

2.3.2. Workload Measures and Comprehensive Combined Measures

Observation of the workload final state helps identifying the impact of the OS on the
workload. We first define the states in which the workload could be after execution of the
corrupted system call, and then define the OS and workload combined states. After that, we
define workload benchmark measures.

The workload is characterized by one of the following outcomes: i) the workload completes
with correct results, ii) it completes with erroneous results, iii) the workload is aborted, or
iv) the workload hangs. These outcomes are summarized in Table 2.2. Let WC refer to the
case where the workload is in a completion state (WC = WCC U WEC), being it correct or
erroneous.

Clearly, the workload could end up in any of the four possible states of Table 2.2 irrespective
of the outcomes SEr, SXp or SNS that can characterize the state of the OS. Conversely,

DBench Dependability Benchmark for General Purpose Operating Systems

2-7

whenever the outcome SPc (Panic) is observed, this can only lead the workload to abort or
hang, while an OS Hang leads necessarily the workload to hang.

Table 2.3 presents the possible comprehensive states combining OS and workload states
denoted (S* – W*). The most critical situation corresponds to the cases when the OS is in a
No Signalling state while the workload is an erroneous completion state, SNS – WEC.

Table 2.2: Possible workload outcomes

WCC Correct completion

WEC Erroneous completion

WAb Abort

WHg Hang

Table 2.3: Possible combined outcomes

↓ Workload
SUB (OS) →

 Error code Exception Panic Hang No signalling

Correct completion SEr – WCC SXp – WCC — — SNS – WCC

Erroneous completion SEr – WEC SXp – WEC — — SNS – WEC

Abort SEr – WAb SXp – WAb SPc – WAb — SNS – WAb

Hang SEr – WHg SXp – WHg SPc – WHg SHg – WHg SNS – WHg

The OS robustness measure, POS, can be refined using the distribution of the percentages of
the workload outcomes when the OS is in state SNS. Let PSNS denote the associated
dimension-4 vector. For sake of simplicity, PSNS is referred to as the workload robustness.

The workload temporal measure of interest is the duration of workload completion,
irrespective of the state of the SUB. Let tWC denote the time required for the workload to
reach state WC in the presence of fault and τWC the workload average execution time in
absence of faults.

2.3.3. Summary of Measures

Table 2.4 summarises the two robustness measures associated respectively to the OS being
considered alone, and the OS combined with the workload.

The temporal measures are evaluated as average times over all experiments categorized by a
specific outcome. However, standard deviation, maximum and minimum values are also of
prime interest.

Let Texec, TSEr, TSXp, TSNS, Tres and TWC denote respectively the average times for the
previously identified times.

DBench Dependability Benchmark for General Purpose Operating Systems

2-8

Table 2.5 recapitulates these temporal measures.

Table 2.4: Robustness measures

Measure Definition

POS OS robustness
Behaviour of the OS — vector of 5 elements

PSNS Workload robustness
Behaviour of the workload when the OS is in SNS— vector of 4 elements

Table 2.5: Temporal benchmark measures

Reaction time

τexec Time for the OS to execute a system call, in the absence of faults

Texec Time for the OS to execute a system call, in the presence of faults

TSEr Time for the OS to return an error code in the presence of faults

TSXp Time for the OS to notify an exception in the presence of faults

TSNS System call execution time when the OS is in state SNS, in the presence of faults

Restart time

τres Duration of OS restart in the absence of faults

Tres Duration of OS restart in the presence of faults

Workload execution time

τWC Duration of the workload execution in the absence of faults

TWC Duration of the workload execution in the presence of faults

2.3.4. Basic and Complementary Measures

Performance benchmarks usually evaluate only one or two measures. It can be considered
that our benchmark evaluates two sets of measures:

• The first set is composed of POS, Texec and Tres.

• The second set corresponds to the other measures of Tables 2.4 and 2.5.

From our point of view, the first set constitutes the basic set of measures for characterizing
the OS in the strict sense. The second set includes measures that are not mandatory and can
be considered as complementary measures. Complementary measures concern either the OS
(TSEr, TSXp, TSNS), they can be used to provide more refined information on its behaviour,
or the workload measures (PSNS,TWC).

Specific benchmark implementations may simply ignore measures that are of less interest
(from the basic or complementary set) and the associated information does not need to be

DBench Dependability Benchmark for General Purpose Operating Systems

2-9

recorded. However, it is worth to mention that, except for PSNS that requires additional
analyses, all the other measures in Tables 2.2 and 2.3 do not require any specific analysis and
effort to be implemented as we will show in the next section.

2.4. Experimental Dimensions

In the case of performance benchmarks, the benchmark execution profile is simply a
workload that is as realistic and representative as possible for the system under test. For our
general-purpose OS dependability benchmark, the execution profile includes in addition
corrupted parameters in system calls. The set of corrupted parameters is referred to as the
faultload. We aim at modifying the parameters of the system calls activated by the workload
to simulate the erroneous parameter values that the application processes could communicate
to the OS.

From a practical point of view, the faultload can be either integrated within the workload
(i.e., the faults are embedded in the program being executed) or provided in a separate
module. For enhanced flexibility, we made the latter choice: the workload and the faultload
are implemented separately, which allows for a better portability of the faultload. As a
consequence: i) the same faultload can be applied with different workloads, and ii) any
available performance benchmark workload can be used.

In our benchmark, we use the workload of TPC-C client, but we do not use the performance
measures specified by TPC-C as they are far from being suitable to characterize the
behaviour of an OS.

In the sequel, we concentrate on the specification of the faultload and more precisely on the
technique for corrupting the system call parameters, and the selection of the set of system
calls to be corrupted. Then we address the measurements to be performed on the system
during the experiments in order to derive the benchmark measures (basic and complementary
measures).

2.4.1. Parameter Corruption Technique

We use a parameter corruption technique similar to the one used in [Koopman et al. 1997],
relying on a thorough analysis of system call parameters to define selective substitutions to
be applied to these parameters. A parameter is either a data or an address. The value of a data
can be substituted either by an out-of-range value or by an incorrect (but not out-of-range)
value, while an address can be substituted by an incorrect (but existing) address (containing
usually an incorrect or out-of-range data). We use a mix of these three corruption techniques.

Annex 2-A provides some comparative results intended to explain and justify our choice of
the retained parameter corruption technique.

To reduce the number of experiments, the parameter data types are grouped into classes. A
set of values is defined for each class. They depend on the definition of the class. For
example, for Windows, we have grouped the data types into 13 classes. Among these classes,
9 are pointer classes. Apart from pvoid (pointer which points to anything), all other pointers
point to a particular data type. Substitution values for these pointers are combination of

DBench Dependability Benchmark for General Purpose Operating Systems

2-10

pointer substitution values and the corresponding data type substitution values. Table 2.6
reviews the substitution values associated with the most used data type classes.

Table 2.6: Parameter substitution values per data type class

Data type class Substitution values

pvoid NULL 0xFFFFFFFF 1 0xFFFF Random

integer 0 1 (MAX INT) (MIN INT) 0.5

unsigned integer 0 1 0xFFFFFFFF -1 0.5

boolean 0 0xFF (Max) 1 -1 0.5

string Empty Large (> 200) Far (+ 1000)

2.4.2. System Calls to Be Corrupted

Ideally, and without any time limitation, all system calls used in the workload with
parameters should be corrupted. For small workloads this might be possible. However, for
workloads such TPC-C client, more than 100 system calls are involved, with several
occurrences in the program, this would require several weeks of experimentation. In addition,
all system calls are not necessarily interesting to be corrupted. For practical reasons, one has
to target a subset of system calls. This selection depends on the nature of system calls that are
worth to corrupt and the accepted benchmark experimentation duration. The benchmark
duration depends on the duration of each experiment and on the number of experiments to be
performed. The latter depends on i) the number of system calls to corrupt, ii) the number of
parameters to corrupt in a system call and iii) the number of substitution values associated to
each parameter. From our experience on Linux and Windows, an experiment lasts on average
less than 5 minutes. Using a fully automated benchmark set-up, approximately 1400
experiments can be run in 5 days. This leads to consider 40 to 60 system calls to be corrupted
(depending on the number of parameter substitutions) for a 5-day fully automated benchmark
execution.

The first step in choosing system calls whose parameters will be corrupted consists in
identifying all system calls used in the workload as well as their occurrences. In order to
insure portability of the faultload, our recommendation is to use the criticality of OS
functional components as a selection criterion. Selection of system calls associated to specific
functional components facilitates comparison between OSs that are not from the same family
(e.g, with distinct APIs). Indeed, even though OSs do not necessarily comprise exactly the
same system calls, most OSs feature comparable functional components.

Our benchmark targets the following functional components that we have identified as the
most critical for a general-purpose OS: Processes and Threads, File Input/Output, Memory
Management and Configuration Manager.

DBench Dependability Benchmark for General Purpose Operating Systems

2-11

2.4.3. Measurements

The number of substitutions determines the number of experiments. The experiments are
achieved independently and the system is restarted after each experiment. To assess the
benchmark measures defined in Tables 2.4 and 2.5, several measurements have to be
performed on the system during each experiment, related to the OS and to the workload states
and temporal behaviour.

At the SUB level, after each experiment run:

• The state of the OS is to be recorded. In states SEr, SXp and SNS, the OS is alive and
delivers explicit information to the workload. These states can be recorded easily, along
the time required to the OS to provide the information to the workload (respectively
tSEr, tSXp and tSNS). The panic and hang states can only be reliably diagnosed and
recorded by a remote machine (refered to as the Benchmark Controller — see Section
2.5). The latter is part of the Benchmark Management system.

• The system restart duration time tres is measured.

Hence for each experiment, the OS state and restart duration are to be recorded. In addition,
states SEr, SXp and SNS, the associated times can optionally be recorded to evaluate more
refined measures.

After running the whole set of experiments, POS (the dimension-5 OS robustness vector) and
Tres (the average restart time) can be evaluated, as well as the average OS reaction times
Texec, TSEr, TSXp and TSNS.

At the workload level, after each experiment run, the workload state is recorded as well as the
workload completion time. After running the whole set of experiments, the workload
robustness PSNS (the dimension-4 vector for combined benchmark measures), and the
(average) workload execution time TWC are evaluated.

2.5. Benchmark Prototype

In this section, we present the dependability benchmark prototype that was implemented for
Windows family.

First, we describe the system under benchmark and the execution profile defined. Then, we
detail how the operating system benchmark specifications presented in the previous sections
was implemented.

2.5.1. Systems Under Benchmark

The considered SUB is made up of the operating system running on x86 hardware. In the
architecture of Windows, the application processes call OS services through one or more
environment subsystem Dynamic Link Libraries (DLLs). The role of an environment
subsystem is to expose a subset of the base Windows 2000 executive system services to
application programs. The Win32 environment subsystem DLLs (such as kernel32.dll,

DBench Dependability Benchmark for General Purpose Operating Systems

2-12

Advapi32.dll, User32.dll, and Gdi.dll) implements the Win32 API functions. Although
Windows 2000 was designed to support multiple programming interfaces, Win32 is its
primary and preferred interface. Moreover, Windows 2000 cannot run without the Win32
environment subsystem [Solomon and Russinovich 2000]. Consequently, this is the
considered interface on which the faultload is applied.

2.5.2. Execution Profile

The TPC-C client implementation used in the current benchmark set-up is the same as the
one used by other DBench partners (see e.g., [Vieira and Madeira 2003] and Chapter 5). The
workload of TPC-C client activates 132 system calls (with parameters). The considered
functional components (Processes and Threads, File Input/Output, Memory Management and
Configuration Manager) use 28 system calls, for which 75 parameters have been corrupted
leading to run 552 experiments using the benchmark experimental set-up presented hereafter.
Annex 2-A shows that for the three OSs considered, the selected system calls lead to the
same benchmark comparison result as when considering all the 132 system calls of TPC-C
client.

2.5.3. Experimental Set-up and Benchmark Conduct

As it was already pointed out, since perturbing the operating system may lead the OS to
hang, a remote machine is required to reliably control the benchmark experiments.
Accordingly, for running an OS dependability benchmark we need at least two computers:
i) the Target Machine (TM) for hosting the benchmarked OS and the workload, and ii) the
Benchmark Controller (BC) that is primarily in charge of diagnosing and collecting data in
case of a hang or an abort (see Tables 2.1 and 2.2). Furthermore, as we are using a TPC-C
client as workload in the TM, the Data Base Management System (DBMS) is needed to
process the TPC-C client requests. We used a third machine with Oracle DBMS for that
purpose.

Figure 2.1 illustrates the various components that characterize the proposed OS dependability
benchmark prototype. These components are executed on the TM that is running the
benchmarked OS, and on the remote BC machine. The two machines are connected via an
Ethernet network.

The Benchmark Management System referred to in Chapter 1 is therefore composed of the
benchmark controller, the interceptor and the Data Base Management System (DBMS).

DBench Dependability Benchmark for General Purpose Operating Systems

2-13

Figure 2.1. Experimental set-up

To intercept the Win32 functions (i.e., system calls), we have modified the “Detours” tool
[Hunt and Brubaher 1999], a library for intercepting arbitrary Win32 system calls on x86
machines. This modification was made to facilitate replacement of system call parameters by
substitution values. Also, we have added several modules in the library to observe the
reactions of the OS after parameter substitution, and to retrieve the required measurements.

At the beginning of each experiment, the target machine records the experiment start instant
tExpStart and sends it to the BC along with a notification of experiment start-up. The workload
starts its execution. The Observer module of the Interceptor records the start-up instant of the
workload tWStart, the activated system calls and their resultant responses in the experiment
execution trace. This trace collects also the relevant data concerning states SEr, SXp and
SNS. The recorded trace is sent to the BC at the beginning of the next experiment.

The Injector module of the Interceptor checks whether the current system call is the system
call in which a parameter is to be corrupted. If this is not the case, the execution is simply
resumed. Otherwise, the execution is interrupted, a parameter value is substituted and then
the execution is resumed. At the end of the execution of the TPC-C client, the SUB notifies
the BC of the end of the experiment by sending an end signal along with the experiment end
instant, tExpEnd.

When the workload does not complete (e.g., in case of a hang), then tExpEnd is mainly
governed by the value of a watchdog timer that controls the monitoring of the workload
execution.

The experiment steps are illustrated in Figure 2.2-a in case of workload completion.
Figure 2.2-b shows the experiment steps in case of workload Ab/Hg (i.e., without workload
completion).

DBench Dependability Benchmark for General Purpose Operating Systems

2-14

tExpStart
(n)

tExpEnd
(n)

tResume
(n)

tResponse
(n)

tWStart
 (n)

tExpStart
(n+1)

Restart timeOS Reaction time

System Call
intercepted

Workload End

Workload execution time

Execution
resumed

Time

a- After workload completion

tExpStart
(n)

tExpEnd
(n)

tResume
(n)

tResponse
(n)

tWStart
 (n)

tExpStart
(n+1)

Restart timeOS Reaction time

System Call
intercepted

Workload End

Time

Timeout = 5 minutes

Execution
resumed

b - Without workload completion

Figure 2.2. Benchmark execution sequence and temporal measures

Each experiment requires the following steps:

• The system call is intercepted and interrupted.

• A parameter is replaced by a substitution value.

• The execution of the intercepted system call is resumed and the instant of resumption
tResume is saved in the experiment execution trace.

• The state of the OS is monitored so as to diagnose one of the possible outcomes (SEr,
SXp, SNS). The corresponding OS response time (tResponse) is recorded in the
experiment execution trace.

• The system is restarted.

For each run, the OS reaction time (either tSEr, tSXp or tSNS) is calculated as the difference
between tResponse and tResume.

The BC collects the SHg state of the SUB and WAb and WHg states of the workload. It is in
charge of restarting the SUB in such occurrences. The average time necessary for the OS to
execute the TPC-C client is about 70 seconds when no faultload is applied. We have currently
fixed a maximum delay of 5 minutes (counted from the instant when the BC receives the signal
of the start of the execution, tWStart), during which the workload is expected to be executed. If
at the end of this delay the BC has not received the end signal from the OS, it then attempts to
connect to the OS. If this connection is successful, then a workload abort/hang state is
diagnosed, otherwise SHg is assumed. Thus tExpEnd specifies either the completion of the
workload or the triggering of the watchdog timer. In case of workload completion, the
workload execution time (see Table 2.5) is calculated with reference to the launch of the
workload at time tWStart.

Finally, the OS restart time for experiment n-1 is determined as the difference between tExpStart

of experiment n and tExpEnd of experiment n-1.

DBench Dependability Benchmark for General Purpose Operating Systems

2-15

2.6. Results

The benchmark and the prototype defined in the previous sections are used to compare the
behaviour of Windows NT4, 2000 and XP [Kalakech et al. 2004a]. Let us recall that the
faultload used in the benchmark addresses the 28 system calls invoked by the four Windows
functions that we have identified as the most critical ones. For these system calls, 75
parameters have been corrupted in several ways, leading to 552 corrupted system calls.
Hence the number of experiments in the benchmark is 552.

In this section, we present the results related to the basic set of benchmark measures defined
in Section 2.3.4 (OS robustness, OS reaction and restart times). These measures give
information on the global behaviour of the OSs. Annex 2-B shows how they can be refined
taking into account the complementary set of measures defined in Section 2.3.4.

2.6.1 OS Robustness

The OS robustness is given in Figure 2.3. No panic and hang states were observed for the
three OSs. Exceptions have been notified in 11.4 % to 12 % of the cases, while the number of
experiments with error code return varies between 31.2 % and 34.1 %. More than half of the
experiments lead to a no signalling outcome. Figure 2.3 shows a similar behaviour for the
three OSs with respect to robustness (the larger difference is observed for the no signalling
case, it is less than 3%).

It could be argued that robustness is sensitive to the parameter corruption technique used as
well as to the system calls selected. We have made a sensitivity analysis with respect to these
two elements. This analysis confirmed the equivalence of the three OSs with respect to the
OS robustness measure (see Annex 2-A).

OS Hang/Panic
0.0%

No Signaling
55.1%

OS Error Code
33.0%

OS Exception
12.0%

Windows NT4

OS Hang/Panic
0.0%

No Signaling
54.5%OS Error Code

34.1%

OS Exception
11.4%

Windows 2000

OS Hang/Panic
0.0%

No Signaling
57.4%

OS Error Code
31.2%

OS Exception
11.4%

Windows XP

Figure 2.3: OS Robustness measure

2.6.2 OS Reaction Time

The OS reaction time in the absence of faults, τexec, is evaluated as the average reaction
times of the 28 selected system calls whose parameters are being corrupted for the
experiments. Table 2.7 shows that, in absence of fault, the three OSs have different reaction
times.

DBench Dependability Benchmark for General Purpose Operating Systems

2-16

The OS reaction time, Texec, corresponds to the average reaction time of the selected 28
system calls in the presence of faults. Table 2.7 shows that the shortest time is obtained for
Windows XP while the longest one corresponds to Windows 2000. For Windows XP, this
time is slightly larger than the reaction time in absence of faults while it is significantly lower
for the two others. This may be explained by the fact that in about 45% of cases the OS
detects the injected fault. It does not execute the faulted system call and returns an error code
or notifies an exception. The standard deviation is significantly larger than the average for the
three OSs. Annex 2-B will provide more detailed information to explain the various
behaviours.

Table 2.7: OS reaction time

 Windows NT4 Windows 2000 Windows XP

 Average St. deviation Average St. deviation Average St. deviation

 τexec 344 µs 1782 µs 111 µs

Texec 128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs

2.6.3 System Restart Time

The system restart time is given in Table 2.8 which shows that Windows XP restart time is
70% of that of Windows 2000, without fault and 73% of this time in the presence of faults.
For all systems, the restart time is only few seconds larger than without faults. The standard
deviations are small.

Table 2.8: System restart time

 Windows NT4 Windows 2000 Windows XP

 Average St. deviation Average St. deviation Average St. deviation

τres 92 s 105 s 74 s

Tres 96 s 4 s 109 s 8 s 80 s 8 s

2.6.4 Result Summary

The above results suggest that Windows XP is equivalent to Windows NT4 and
Windows 2000 from the robustness point of view, but has shorter reaction time as well as
shorter restart times, both with and without faults.

The results related to time measures are in conformance with the statement provided by
Microsoft. When Windows XP is installed, the following message is displayed:

"Your Computer will be faster and more reliable1

1 It is worth to mention that the term "reliability" as defined in the above statement is different from the

robustness measure evaluated in our dependability benchmark.

DBench Dependability Benchmark for General Purpose Operating Systems

2-17

Windows XP professional not only starts faster than any previous version, but it also runs your
programs more quickly and reliably than ever. If a program becomes unstable, you can close it
without having to shutdown Windows".

2.6.5. Time Needed to Develop and to Run the Benchmark

Developing and running an OS dependability benchmark require some effort that is, from our
point of view, relatively affordable. In our case, most of the effort was spent in defining the
concepts, working on faultload definition and studying its representativeness.

The implementation of the benchmark itself was not too much time consuming. It took us
less than one month, spread as follows:

• The installation of the TPC-C client took three days (as stated earlier, the
implementation used in the current set-up is the same as the one used in Chapter 5).

• The implementation of the different components of the controller took about two
weeks, including the customisation of the “Detours” tool.

• The implementation of the faultload took one week, during which we have i) defined
the set of the values related to the 28 system calls with their 75 parameters to be
corrupted and ii) created the database of the corrupted values. The same database is
used for the three Windows OSs.

The benchmark execution time for each OS is two days.

Indeed, the duration of an experiment with workload completion is less than 3 minutes
(including the time to workload completion and the restart time), while it is about 7 minutes
without workload completion (including the workload watchdog timeout of 5 minutes and
the restart time). Thus, on average, an experiment lasts less than 5 minutes. Let us recall that
552 experiments have been performed for each OS (Cf. Section 2.5.2). There experiments are
fully automated. The whole benchmark execution duration is thus about 46h for each OS.

DBench Dependability Benchmark for General Purpose Operating Systems

2-18

2.7. Benchmark Validation

The OS dependability benchmark specified, implemented and used in the previous sections is
a robustness benchmark with respect to erroneous system calls sent by the application
software to the OS. The execution profile has been defined in such a way that the workload
and the faultload are implemented as separate modules. The faultload consists in substituting
the correct values of system call parameters by erroneous values using an interceptor module.
The latter runs between the application layer and the OS API layer. The results obtained for
the three Windows OSs do not contradict the a priori common knowledge about the three
OSs. As the OSs belong to the same family, it is not surprising that their robustness with
respect to the selected faultload is similar. On the other hand, the OS reaction time and restart
time show that Windows XP is faster than Windows NT and Windows 2000 and do not
contradict the information provided by Microsoft.

Of course, it will be interesting to use another workload to check the validity of the obtained
results. In particular, OS performance benchmarks, such as lmBench [McVoy and Staelin
1996], that is based on workloads specifically dedicated to general purpose OSs, are good
candidates and could be investigated.

Moreover, the validation of the concepts requires implementation of the benchmark
specification to another OS family. We are currently modifying the developed prototype to
benchmark Linux.

In addition to the above considerations, validation of the benchmark specifications and
implementation should address the properties stated in Chapter 1: representativeness,
repeatability and reproducibility, portability, scalability, and non-intrusiveness. These
properties are addressed successively in the rest of this section.

2.7.1. Representativeness

Representativeness concerns the benchmark measures evaluated, the workload and the
faultload.

Regarding measures, we emphasize that the three basic measures evaluated in our OS
dependability benchmark are of interest to a system developer (or integrator) for selecting the
most appropriate OS for his/her own application. The basic set gives information on the OS
state and temporal behaviour (reaction and restart times) after execution of a corrupted
system call. The three basic measures can be refined using information of the workload state
(this is illustrated in Annex 2-B).

We have selected a workload that is well known and commonly used for transactional
systems. However, as stated earlier, other workloads should be used to check the validity of
the results. Nevertheless, the selection of any other workload does not affect the concepts and
specifications of our benchmark. We expect to investigate other workloads. Indeed, we
preferred putting emphasis on faultload representativeness as shown herefater.

The faultload is without any doubt the most critical dimension of the OS benchmark and
more generally of any dependability benchmark. In our work [Jarboui et al. 2002], we have

DBench Dependability Benchmark for General Purpose Operating Systems

2-19

used two techniques for system call parameter corruption: the bit-flip technique consisting in
flipping systematically all bits of the target parameters (i.e., flipping the 32 bits of each
parameter considered) and the selective substitution technique described in Section 2.4.1.
This work was performed for Linux and allowed us to conclude the equivalence of the errors
provoked by the two techniques. The application of the bit-flip technique requires much more
recurrent time (i.e., experimentation time) compared to the application of selective
substitution technique. Indeed, in the latter case, as shown in Section 2.4.1, the set of values
to be substituted is simply determined by the data type of the parameter. Therefore, this set
leads to a more focused set of experiments. Additionally, Annex 2-A shows that the
benchmark results obtained using the selective substitution technique are very similar to
those obtained using the bit-flip for Windows 2000, as well.

We have thus preferred the selective substitution technique for pragmatic reasons: it allows
derivation of results that are similar to those obtained using the well-know and accepted bit-
flip fault injection technique, with much less experiments.

As a consequence, the benchmark presented in this chapter is based on selective substitutions
of system call parameters to be corrupted.

2.7.2. Repeatability and Reproducibility

An OS dependability benchmark is composed of a series of experiments. Each experiment is
run after system restart. The experiments are independent from each other and the order in
which the experiments are run is not important at all. Hence, once the system calls to be
corrupted are selected and the substitution values defined, the benchmark is fully repeatable.
We have repeated our first benchmarks three times to check for repeatability.

We have not checked explicitly and directly the reproducibility of the benchmark results.
However, the comparison results obtained for fault representativeness increases our
confidence in reproducibility. The benchmark comparison results seem to be independent
from the technique used to corrupt system call parameters. Also, the results seem to be not
affected by the system calls involved. This makes us confident about reproducibility.
However, more verification is still required.

2.7.3. Portability

Portability concerns essentially the faultload (i.e., it applicability to other OS faminlies).

At the specification level, in order to insure portability of the faultload, the system calls to be
corrupted are not defined by name. They are specified with respect to the criticality of OS
functional components, because OSs from different families do not necessarily comprise
exactly the same system calls. They may have different APIs. However, most OSs feature
comparable functional components.

At the implementation level, portability can only be insured for OSs from the same family
because different OSs families have different API sets.

DBench Dependability Benchmark for General Purpose Operating Systems

2-20

Our prototype is portable across the Windows OS family that shares the Win32 API used in
our experiments.

2.7.4. Non-intrusiveness

The corrupted parameters are inserted instead of the correct ones, without introducing any
modification in the target kernel. However the library has been modified in two ways:
i) interception of Win32 functions required the use the Detours Library and ii) the
observation of the OS reaction required additional modules in the Library.

2.7.5. Scalability

Usually, the functionalities of general purpose OSs are comparable, leading most likely to
comparable numbers of system calls whose parameters are to be corrupted (or at least of the
same order of magnitude). If it happens that more system calls are involved for some OSs,
the concepts of the OS benchmark remain unchanged but more experiments may be required.
It is worth to recall that an experiment lasts on average less than 5 minutes. Scalability is thus
not a real problem in this case.

2.8. Conclusion

In this chapter we have presented the specifications of a dependability benchmark of general-
purpose operating systems and an example of an implementation prototype used to
benchmark Windows NT4, 2000 and XP.

The benchmark addresses the user perspective. The OS is considered as a black box and the
only required information is the description of its API. We put emphasis on the OS
robustness as regards application induced erroneous behaviours. We have defined two sets of
benchmark measures (basic and complementary). We have illustrated how these measures
complement each other in Annex 2-B.

The benchmark has been defined so that the workload executed on the OS can be any
performance benchmark workload (and, more generally, any user tailored application)
intended to run on top of the benchmarked OS. We have used a TPC-C client.

The comparison of the three OSs showed that i) they are equivalent from the robustness point
of view and that ii) Windows XP has the shortest reaction and restart times. Sensitivity
analyses with respect to the parameter corruption technique and to the system calls to be
corrupted (performed in Annex A) showes that, even though for each OS the robustness is
slightly impacted by the technique used and the system call considered, the three OSs are
impacted similarly and remain equivalent.

In addition to the comparison of the three OSs, the results presented in Annex 2-A showed
that using a reduced set of experiments (113) targeting only out-of-range data has led to
results similar to those obtained from the 552 initial experiments targeting additionally
incorrect data and addresses. If this is confirmed for other operating system families, this

DBench Dependability Benchmark for General Purpose Operating Systems

2-21

would divide the benchmark execution duration (that is proportional to the number of
experiments) by almost 5, which is substantial. We will further investigate this issue.

The results allowed us to confirm that the specifications can be implemented and to illustrate
the kind of results that could be obtained from such a benchmark.

The specifications, the prototypes and the results could be improved and should be enhanced
towards several directions. In particular, i) we have to investigate the impact of other
workloads on the results for the same OSs and i) we have to validate the results with respect
to other OSs from different families, e. g., using POSIX API.

DBench Dependability Benchmark for General Purpose Operating Systems

2-22

Annex 2-A Faultload Validation

Let us recall that the faultload used in the benchmark and results presented in this chapter
includes a mix of three parameter corruption techniques (see Section 2.4.1): i) out-of-range
data, ii) incorrect data and iii) incorrect addresses. In total 552 corrupted values for the 75
parameters related to the 28 selected system calls (see Section 2.5.2). This faultload is
referred to as FL0.

In this Annex, we first analyse the impact of these three parameter corruption techniques on
the benchmark results. Then, we present a comparative analysis between the results obtained
for the selective substitution technique and those obtained using a bit-flip corruption
technique (see Section 2.7.1), for the same set of parameters. Finally, we make a sensitivity
analysis with respect to system calls whose parameters are corrupted. These analyses are
aimed at checking the validity of the parameter corruption technique retained and of the
subset of functions whose parameters are corrupted.

2-A.1 Impact of Parameter Corruption Technique

It can be argued that incorrect data is not representative of application faults that should be
detected by the OS. In order to analyse its impact on the benchmark results, we have
considered a reduced faultload FL1 including only out-of-range data and incorrect addresses.
Thus FL1 is composed of 325 corrupted values. Figure 2-A.1 gives the robustness of the
three OSs using FL1. Comparing these results with those of Figure 2.3 shows that even
though the robustness of each OS has been slightly affected by the corruption technique used,
the three OSs have still very similar robustness. As for Figure 2.3, the larger difference is
observed for the No signalling case, it is less than 3%.

Incorrect addresses usually point to out-of range or incorrect data. Taking a pessimistic view,
let us assume that they only point to incorrect data and could be discarded too as in FL1. We
have thus considered a faultload, FL2, comprising only out-of-range data (composed of 113
corrupted values). Figure 2-A.2 shows that using FL2 also leads to similar robustness of the
three OSs. Here also, the larger difference is observed for the No signalling case, it is less
than 4.3%.

Besides, the results corresponding to FL2 are very close to those corresponding to faultload
FL0 used in our benchmark (Figure 2.3). More investigation is required to check the validity
of this result with respect to more system calls and with respect to other workloads. Indeed, if
this result is confirmed for other OS families, the number of experiments can be considerably
reduced by using only out-of-range data.

This result will allow corruption of the parameters of all system calls involved in the
workload using only the out-of-range technique, without increasing significantly the
benchmark run duration. This result will be used in Section 2-A.3.

DBench Dependability Benchmark for General Purpose Operating Systems

2-23

OS Hang/Panic
0.0%

No Signaling
42.2%

OS Error Code
39.4%

OS Exception
18.5%

Windows NT4

OS Hang/Panic
0.0%

No Signaling
40.6%

OS Error Code
42.2%

OS Exception
17.2%

Windows 2000

OS Hang/Panic
0.0%

No Signaling
43.4%

OS Error Code
39.4%

OS Exception
17.2%

Windows XP

Figure 2-A.1: OS Robustness, with respect to out-of-range data and incorrect addresses (FL1)

OS Hang/Panic
0.0%

No Signaling
56.6%

OS Error Code
37.2%

OS Exception
6.2%

Windows NT4

OS Hang/Panic
0.0%

No Signaling
55.8%

OS Error Code
38.1%

OS Exception
6.2%

Windows 2000

OS Hang/Panic
0.0%

No Signaling
60.2%

OS Error Code
33.6%

OS Exception
6.2%

Windows XP

Figure 2-A.2: OS Robustness, with respect to out-of-range data (FL2)

2-A.2 Bit-Flip Technique and Selective Substitution Technique

The sensitivity of the robustness to the parameter corruption technique can be further
analysed, using a bit-flip parameter corruption technique, referred to FL3. We use it here to
corrupt the same set of 75 parameters in a systematic way (i.e., flipping the 32 bits of each
parameter considered). This leads to 2400 corrupted values (i.e., 2400 experiments). The
results are given in Figure 2-A.3 for Windows 20002. This figure shows that the OS
robustness is very similar using the two parameter corruption techniques, which confirms our
previous work on fault representativeness [Jarboui et al. 2002].

FL0:
Selective
substitution
(552 experiments)

OS Hang/Panic
0.0%

No Signaling
54.5%OS Error Code

34.1%

OS Exception
11.4%

Windows 2000

FL2:
Systematic bit-flip
(2400 experiments)

OS Hang/Panic
0.0%

No Signaling
45.4%

OS Error Code
44.0%

OS Exception
10.6%

Windows 2000

Figure 2-A.3: Windows 2000 robustness with respect FL0 and FL3

2 Due to the fact that the three OSs exhibit the same behaviour with respect to the faultload used and the time

required to perform the 2400 experiments, we have not made the experiments for Windows NT and XP.

DBench Dependability Benchmark for General Purpose Operating Systems

2-24

It can thus be concluded that the three OSs present similar robustness results regardless of
the parameter corruption technique used, when corrupting the same set of parameters of the
same set of system calls used in the same workload.

Our recommendation is to use a mix of the three corruption techniques as we did in Section
2.4 and 2.5, to be in the safe side. Nevertheless, for Windows family, out-of-range data give
satisfactory results and the benchmark could include only out-of-range data.

2-A.3 Impact of system calls considered

In order to analyse the impact of system calls whose parameters are corrupted, we have
corrupted the parameters of all the 132 systems calls with parameters, involved in TPC-C.
Based on the results obtained above (Section 2-A.1), related to FL2 (out-of-range data)
compared to FL0 (out-of-range data as well as incorrect data and addresses), we have
considered only out-of-range data (FL2). 353 parameters have thus been corrupted and 468
experiments have been performed for each OS. Let FL4 be this faultload. The results are
given in Figure 2-A.4.

They show the three OSs have similar robustness, when corrupting all system calls involved
in TPC-C client workload. Here also, the larger difference is observed for the No signalling
case, it is less than 5.3%.

OS Hang/Panic
0,0%

No Signaling
63,5%

OS Error Code
31,0%

OS Exception
5,6%

Windows NT4

No Signaling
64,3%

OS Error Code
31,2%

OS Hang/Panic
0,0%OS Exception

4,5%

Windows 2000

OS Hang/Panic
0,0%

No Signaling
68,8%

OS Exception
4,5%

OS Error Code
26,7%

Windows XP

Figure 2-A.4: OS Robustness, with respect to out-of-range data (FL2)

for all the 132 system calls involved in TPC-C workload (FL4)

It can be concluded that the results obtained for a subset of system calls related to the most
critical functions of Windows (corresponding to Processes and Threads, File Input/Output,
Memory Management and Configuration Manager) are similar to those obtained when
considering all system calls. This is why we have targeted these four main functions for
Windows family.

Table 2.4.1 summarises the experiments performed for benchmark validation

DBench Dependability Benchmark for General Purpose Operating Systems

2-25

Table 2-A.1: Summary of experiments performed for benchmark validation

Incorrect data

Incorrect
address

Out-of-range
data

Systematic Bit-
Flip # System calls # experiments

FL0 x x x 28 552

FL1 x x 28 325

FL2 x 28 113

FL3 x 28 2400

FL4 x All (132) 468

DBench Dependability Benchmark for General Purpose Operating Systems

2-26

Annex 2-B Benchmark Measure Refinement

This Annex is intended to show how the benchmark basic measures related to the OS in the
strict sense can be complemented and refined based on the complementary set of measures.
We will show how the results presented in Section 2.6 can be enriched, by examining
additional information that can be provided by the current benchmark prototype.

We will consider successively the three benchmark measures (robustness, OS reaction time
and restart time).

2-B.1 Robustness

The current benchmark prototype does not allow distinction between the workload correct
and erroneous completion states. Additional instrumentation is required to do so. Also, we do
not distinguish between Abort and Hang states for sake of simplicity. Hence, lines 3 and 4 of
Tables 2.2 and 2.3 are grouped.

Table 2-B.1 gives the number of experiments that led the workload to the associated state
(workload completion, WC and workload Abort/Hang).

Table 2-B.1: Number experiments and workload states

 Windows NT4 Windows 2000 Windows XP

WC 451 445 424

WAb/WHg 101 (18.3%) 107 (19.4%) 128 (23.2%)

Table 2-B.2 gives the combined state occurrences. It shows that:

• After an error code issue, the workload is an Abort/Hang state in 25% (46 / 182) of
cases for Windows NT (resp. 28% and 42 % for Windows 2000 and XP).

• After an exception notification, the workload is an Abort/Hang state in 12% of cases for
Windows NT (resp. 9% for Windows 2000 and XP).

The latter result shows that even though the TPC-C benchmark is intended to exercise the
system by submitting transactions and is not intended to process exceptions, only a small
number of experiments lead to Workload Abort/Hang after notification of an exception. This
percentage is higher after an error code issue.

The right most column gives the workload robustness PSNS (as defined in Table 2.4), that is
composed of two elements in this case. When the OS is in the SNS state, the workload is in
the Abort/Hang states in about 16 % of cases, for the three OSs. This result substantiates the
equivalence of the three OSs.

DBench Dependability Benchmark for General Purpose Operating Systems

2-27

Table 2-B.2: Number of combined state occurrences

↓ Workload

Windows NT4→
 Error code (182) Exception (66) Panic Hang No-signalling

(304)

Workload completion 136 58 — 267

Abort / Hang 46 8 0 0 47

↓ Workload

Windows 2000 →
 Error code (188) Exception (63) Panic Hang No-signalling

(301)

Workload completion 136 57 — — 252

Abort / Hang 52 6 0 0 49

↓ Workload

Windows XP →
 Error code (172) Exception (63) Panic Hang No-signalling

(317)

Workload completion 99 57 — — 268

Abort / Hang 73 6 0 0 49

* Non-decidable states

2-B.2 OS Reaction Time

The three last lines of Table 2-B.3 complete the information provided in Table 2.7. They give
the OS reaction time with respect to OS outcomes after execution of a corrupted system call.
It can be seen that i) the time to issue an error code is very short and comparable for the three
systems, ii) the time to notify an exception is higher than that of error code issue but it is still
acceptable for Windows NT4 and XP, but very large for Windows 2000 and iii) the largest
execution time is obtained when the OS does not detect/signal the error (SNS).

Table 2-B.3: Detailed OS reaction times

 Windows NT4 Windows 2000 Windows XP

 Average St. deviation Average St. deviation Average St. deviation

τexec 344 µs 1782 µs 111 µs

Texec 128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs

TSEr 17 µs 18 µs 22 µs 28 µs 23 µs 17 µs

TSXp 86 µs 138 µs 973 µs 2978 µs 108 µs 162 µs

TSNS 203 µs 281 µs 2013 µs 4147 µs 165 µs 204 µs

The very high standard deviation is due to a large variation around the average. Figures 2-B.1
to 2-B.3 confirm this variation. They identify the system calls that led to each of the above
outcomes and give the associated average reaction time in the presence of faults.

Figure 2-B.1 shows the different system calls that have generated an error code, with the
average error code generation time of each of them. Globally, we see that these average times

DBench Dependability Benchmark for General Purpose Operating Systems

2-28

are very close to the global average TSEr (indeed, the standard deviation is smaller than the
average in this case).

0

10

20

30

40

50

60

70

Clos
eH

an
dle

Cre
at

eR
em

ot
eT

hr
ea

d

Dup
lic

at
eH

an
dle

Get
Env

iro
nm

en
tV

ar
iab

leW

Get
Exit

Cod
eT

hr
ea

d

Get
File

Typ
e

Get
Pro

ce
ss

Ver
sio

n

Glob
alA

llo
c

Glob
alF

re
e

Glob
alL

oc
k

Glob
alU

nlo
ck

IsB
ad

W
rit

eP
tr

Lo
ca

lA
llo

c

Lo
ca

lF
re

e

Lo
ca

lR
eA

llo
c

Rea
dF

ile

Res
um

eT
hr

ea
d

Set
Thr

ea
dP

rio
rit

y

Sus
pe

nd
Thr

ea
d

Virt
ua

lA
llo

cE
x

W
rit

eF
ile

Windows NT4 Windows 2000 Windows XP

µs

Figure 2-B.1: Detailed OS reaction time, in SEr, with respect to system calls

Figure 2-B.2 gives the system calls for which an exception was notified with the average
notification time of each of them. The large standard deviation seems to be due to
GetPrivateProfileStringA.

0

50

100

150

200

250

300

Cre
at

eR
em

ot
eT

hr
ea

d

Get
Env

iro
nm

en
tV

ar
iab

leW

Get
Exit

Cod
eT

hr
ea

d

Get
Priv

at
eP

ro
file

Stri
ng

A

Get
Sta

rtu
pI

nf
oA

Glob
alF

re
e

Lo
ca

lF
re

e

Rea
dF

ile

W
rit

eF
ile

Windows NT4 Windows 2000 Windows XP

a: 2640 µs

aµs

Figure 2-B.2: Detailed OS reaction time, in SXp, with respect to system calls

Figure 2-B.3 gives the system calls for which the corrupted parameter was not detected,
leading to SNS. Here two system calls have largely contributed to the high standard
deviation, GetPrivateProfileStringA and GetPrivateProfileIntA.

These figures suggest that more analyses are required to explain the behaviour with respect to
GetPrivateProfileStringA and GetPrivateProfileIntA system calls. However, if we
re-evaluate the various average times without these two system calls, we can see in
Table 2-B.4 that all system reaction times have been reduced compared to those of
Table 2-B.3. Windows XP still has the shortest reaction times.

DBench Dependability Benchmark for General Purpose Operating Systems

2-29

0

100

200

300

400

500

600

Cre
at

eR
em

ot
eT

hr
ea

d

Cre
at

eT
hr

ea
d

Dup
lic

at
eH

an
dle

Fre
eE

nv
iro

nm
en

tS
tri

ng
sW

Get
Exit

Cod
eT

hr
ea

d

Get
Priv

at
eP

ro
file

In
tA

Get
Priv

at
eP

ro
file

Stri
ng

A

Get
Pro

ce
ss

Ver
sio

n

Get
Sta

rtu
pI

nf
oA

Glob
alA

llo
c

Glob
alF

re
e

Glob
alL

oc
k

Glob
alU

nlo
ck

IsB
ad

Rea
dP

tr

IsB
ad

W
rit

eP
tr

Lo
ca

lA
llo

c

Lo
ca

lF
re

e

Lo
ca

lR
eA

llo
c

Rea
dF

ile

Set
Thr

ea
dP

rio
rit

y

Virt
ua

lA
llo

cE
x

W
rit

eF
ile

Windows NT4 Windows 2000 Windows XP

a: 10416 µs

b: 8205 µs

a bµs

Figure 2-B.3: Detailed OS reaction time, in SNS, with respect to system calls

Table 2-B.4: Reaction times without GetPrivateProfileIntA and GetPrivateProfileStringA

system calls

 Windows NT4 Windows 2000 Windows XP

 Average St. deviation Average St. deviation Average St. deviation

τexec 323 µs 1054 µs 60 µs

Texec 72 µs 180 µs 61 µs 96 µs 63 µs 120 µs

TSEr 16 µs 18 µs 21 µs 28 µs 23 µs 16 µs

TSXp 56 µs 60 µs 79 µs 76 µs 85 µs 127 µs

TSNS 117 µs 241 µs 87 µs 120 µs 96 µs 146 µs

2-B.3 System Restart Time

Even though the system restart time in the presence of faults in not very different from the
system restart time without fault, the plots of this time in presence of faults with respect to all
experiments (given in Figure 2-B.4) show the existence of two distinct values.

Careful analysis of the collected data suggests a correlation between the system restart time
and the state of the workload. When the workload is completed, the average restart time is
very close to the one obtained without fault injection, and when the workload is aborted or
hangs, the restart time is 8% to 18% higher. Indeed, the number of experiments that led to
workload abort/hang was respectively 101, 107 and 128 for Windows NT4, 2000 and XP.
Even though Windows XP had induced more workload abort/hang, it still has the lowest
system restart time as indicated in Table 2-B.5. The latter recalls in lines 1 and 2 the restart
times without faults, τres, and in presence of faults, Tres, and refines Tres in the last two lines
according to the workload state, i.e., completion or abort/hang, irrespective of the OS
outcome.

DBench Dependability Benchmark for General Purpose Operating Systems

2-30

60

80

100

120

140

160

0 100 200 300 400 500

Experiment

seconds

Windows NT4

60

80

100

120

140

160

0 100 200 300 400 500

Experiment

seconds

Windows 2000

60

80

100

120

140

160

0 100 200 300 400 500

Experiment

seconds

Windows XP

Figure 2-B.4: Detailed OS restart times

Table 2-B.5: System restart time according to the workload state

 Windows NT4 Windows 2000 Windows XP

τres 92 s 105 s 74 s

Tres 96 s 109 s 80 s

Tres after WL completion 95 s 106 s 76 s

Tres after WL abort/hang 102 s 123 s 90 s

2-B.4 Workload execution time

Table 2-B.6 summarizes the time of workload completion without fault (τWC) and in the
presence of faults (TWC). It can be noted that, compared to the workload execution time in
absence of faults, the increase of workload execution time is 3% for Windows XP, 6 % for
Windows 2000 and 8% for Windows NT. In addition the standard deviations are relatively
small denoting small variations in workload execution time.

Table 2-B.6: Workload execution times

 τWC TWC Standard deviation

Windows NT4 74 s 80 s 12 s

Windows 2000 70 s 74 s 13 s

Windows XP 67 s 69 s 10 s

