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Abstract 

This chapter presents a dependability benchmark for general-purpose operating systems 
(OSs). The benchmark is defined through the specifications of its main components. The 
specifications are implemented in the form of a benchmark prototype. The important novelty, 
as regards OS dependability benchmarking, is threefold. First, it lies on a comprehensive and 
structured set of measures: outcomes are considered both at the OS level and at the 
application level. Second, these measures include not only robustness measures (e.g., the 
distribution of the observed outcomes for the OS and the application), but also related 
temporal measures in the presence of faults (e.g., OS reaction time and restart time). Finally, 
we are using a realistic workload (namely, TPC-C client), instead of a synthetic workload.  

The benchmark prototype is used to compare the dependability of three operating systems 
(Windows NT4, Windows 2000 and Windows XP) with respect to erroneous behaviour of 
the application layer. The results show a similar behaviour of the three OSs with respect to 
robustness and a noticeable difference in OS reaction and restart times (Windows XP has the 
shortest reaction and restart times). They also show that the application state (mainly the 
hang and abort states) significantly impacts the restart time for the three OSs.  
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2.1. Introduction 

System developers are increasingly resorting to off-the-shelf operating systems (commercial 
or open source), even in critical application domains. However, any malfunction of the 
Operating System (OS) may have a strong impact on the dependability of the global system. 
Therefore, it is important to make available information about the OS dependability, despite 
the lack of information available from its development.  

The aim of our OS dependability benchmark is to provide results that objectively 
i) characterize qualitatively and quantitatively the OS behaviour in the presence of faults and 
ii) evaluate performance-related measures in the presence of faults. These results can help a 
system integrator in selecting the most appropriate OS, based on the benchmark measures 
evaluated, in complement to other criteria (e.g., performance, maintenance, etc.). The 
benchmark is entirely based on experimentation on the OS. 

Several relevant attempts were already proposed to help characterize the failure modes and 
robustness of software executives. A comprehensive analysis of the issues linking robustness 
and dependability can be found in [Mukherjee and Siewiorek 1997]. The executives targeted 
in these studies encompass real time microkernels [Chevochot and Puaut 2001; Arlat et al. 
2002], general purpose OSs [Tsai et al. 1996; Koopman and DeVale 1999], as well as 
CORBA middleware implementations [Pan et al. 2001; Marsden et al. 2002]. Results 
concerning the robustness with respect to faults in device drivers can be found in [Durães and 
Madeira 2002] and in [Albinet et al 2004]. The work reported in [Shelton et al. 2000] 
specifically addressed the robustness of the Win32 API as is the case for the proposed 
benchmark prototype.  

The important novelty, as regards OS dependability benchmarking, that is provided by the 
work reported here is threefold. First, it lies on a comprehensive and structured set of 
measures: outcomes are considered both at the OS level and at the application level. Second, 
these measures include not only robustness measures (e.g., the distribution of the observed 
outcomes for the OS and the application), but also related temporal measures in the presence 
of faults (e.g., OS reaction time and restart time). Finally, we are using a realistic workload 
(namely, TPC-C client), instead of a synthetic workload.  

The remainder of the chapter is organized as follows. Section 2.2 gives an overview of the 
benchmark. Sections 2.3 and 2.4 specify respectively the benchmark measures and the 
experimental dimensions. Section 2.5 describes a particular prototype for Windows family. 
Section 2.6 presents some results related to the comparison of three OSs namely Windows 
NT4, Windows 2000 and Windows XP, obtained using this prototype. Section 2.7 is devoted 
to the validation of the benchmark while Section 2.8 concludes the chapter. Annex 2-A 
provides sensitivity analysis related to the faultload selection and Annex 2-B shows how the 
benchmark measures can be refined, based on complementary measures. 
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2.2. Dependability Benchmark Overview 

An OS can be viewed as a generic software layer that virtualises and manages all aspects of 
the underlying hardware. The OS provides i) basic services to the applications, through an 
Application Programming Interface, API, (e.g., Win32 for Windows OSs), and 
ii) communication with peripherals devices via device drivers.  

For an OS dependability benchmark, the Benchmark Target (BT) corresponds to the OS. 
However, for the BT to be assessed, it is necessary to run it on top of a hardware platform 
and to use a set of libraries such as device drivers. Thus, the BT along with the hardware 
platform and libraries necessary to run it under the benchmark execution profile form the 
System Under Benchmarking (SUB). Although, in practice, the benchmark results obtained 
characterise the SUB (e.g., the OS reaction and restart times are strongly dependent on the 
underlying hardware), for clarity purpose we will state that the benchmark results 
characterise the OS.  

The OS dependability benchmark presented in this chapter is a robustness benchmark 
[Kalakech et al. 2004]. Robustness is defined as the degree to which a system operates 
correctly in the presence of exceptional inputs or stressful environmental conditions. 
Robustness can thus be viewed as an indication on the OS capacity to resist/react to faults 
induced by the applications running on top of it, or originating from the hardware layer or 
from device drivers. We put emphasis on the OS robustness as regards application erroneous 
behaviours, more precisely, with respect to possible erroneous system calls provided by the 
application software to the OS via the API. These erroneous system calls result from 
corrupted parameters, including invalid parameters, in system calls. It is worth mentioning 
that for sake of conciseness such erroneous system calls are shortly referred to as faults in 
this chapter.  

The proposed benchmark addresses the user perspective, i.e., it is primarily intended to be 
performed by (and to be useful for) someone or an entity who has no in depth knowledge 
about the OS. The benchmark results are aimed at significantly improving her/his knowledge 
about its behaviour in presence of faults and comparing alternative OSs. In practice, the user 
may well be the developer (or the integrator) of a system including the target OS as a COTS 
component. What is important is that the OS is considered as a “black box” and accordingly, 
the source code does not need to be available. The only required information is the 
description of the OS in terms of system calls (in addition of course to the description of the 
services provided by the OS). 

We specify a full set of benchmark measures. Some of them characterize the OS behaviour in 
the strict sense, while some others provide information on the impact of the fault as perceived 
by the executed workload. As users may be only interested in characterizing the OS 
behaviour in the strict sense, the benchmark implementation should make it possible to 
simply ignore some measures and thus not to record the associated measurements.  

The benchmark is defined so that the workload executed on the OS could be any performance 
benchmark workload (and, more generally, any user tailored application) intended to run on 
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top of the benchmarked OS. The specification and the prototype example we have developed 
use TPC-C client [TPC-C 2002] as a privileged workload. 

The specifications of the benchmark must define clearly the following items:  

1) The benchmark measures to be evaluated. 

2) The benchmark experimental dimensions (i.e., the workload, faultload and the 
measurements to be performed on the system).  

3) The set-up and related implementation issues required for developing and running a 
benchmark prototype. 

It is clear that these items are not totally independent from each other. However, for practical 
reasons, in the subsequent sections, we address them separately: Sections 2.3 and 2.4 will 
cover the specifications of the measures and experimental dimensions, while the benchmark 
prototype implemented according to these specifications will be described in Section 2.5. 

2.3. Benchmark Measures 

Erroneous system calls are provided to the OS through the API. Their consequences on the 
OS behaviour are deduced from the OS outcomes that are complemented by the workload 
outcomes. Measures defined from the OS outcomes characterise the OS behaviour in the 
strict sense, while the measures at the workload level provide information on the impact of 
the OS behaviour on the state of the application. Measures defined from both outcomes allow 
for a comprehensive description of the consequences of erroneous system calls. 

We will first define the OS benchmark measures then address measures related to the 
combined behaviour of the OS and the workload.  

For each of them, two classes of measures are considered: i) robustness measures, concerning 
the qualitative and quantitative behaviour in the presence of faults and ii) temporal measures 
in the presence of faults standing for OS reaction time, system restart time and workload 
execution time.  

2.3.1. OS Measures 

We first define the states of the benchmarked OS after execution of the corrupted system call. 
Then, we define the related robustness measure before describing the temporal measures.  

After execution of a corrupted input, the OS is in one of the states defined in Table 2.1. 

• SEr corresponds to the case where the OS generates an error code that is delivered to 
the application.  

• SXp: corresponds to the case where the OS issues an exception. Two kinds of 
exceptions can be distinguished depending on whether it is issued during the 
application software execution (user mode) or during execution of the kernel software 
(kernel mode). In the user mode, the OS processes the exception and notifies the 
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application (the application may or may not take into account explicitly this 
information). However, for some critical situations, the application is automatically 
aborted by the OS. An exception in the kernel mode is automatically followed by a 
panic state (e.g., blue screen for Windows and oops messages for Linux). Hence, 
hereafter, the latter exceptions are included in the panic state and the term exception 
refers only to user mode exceptions. 

• SPc: In the panic state, the OS is still “alive” but it is not servicing the application. In 
some cases, a soft reboot is sufficient to restart the system.  

• SHg: In the hang state, a hard reboot of the OS is required.  

• SNS: In the no-signalling state, the OS does not detect the presence of the erroneous 
parameter. As a consequence, it accepts the erroneous system call and executes it. It 
may thus abort, hang or respond to the application whenever such a response is 
expected from it. However, the response might be erroneous or correct. For some 
system calls, the application may not require any explicit response, so it simply resumes 
execution after issuing the system call.  

SNS can be characterized by the fact that none of the previous outcomes (SEr, SXp, 
SPc, SHg) is observed.  

Table 2.1: OS outcomes  

SEr An error code is returned 

SXp An exception is raised, processed and notified to the application 

SPc Panic state 

SHg Hang state 

SNS None of the above situations is observed (No-signalling state) 

 

Remarks 

• Panic and hang outcomes are actual states, as they can last for a while. Conversely, SEr 
and SXp characterize only events. They are easily identified when an error code or a 
user exception notification are provided by the OS.  

• It could happen that several error codes or/and exceptions are generated successively 
during a single run of the workload. Accordingly several options can be considered for 
categorizing these runs [Rodríguez et al. 2002]. In the proposed benchmark, the 
outcomes are categorized according to the first event. If needed, further refinement of 
the outcomes can be made according to the actual error or exception reported. 

2.3.1.1. OS Robustness  

A benchmark campaign is composed of a series of independent runs (referred to as 
experiments). Each run consists in executing the workload with a corrupted system call. The 
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robustness measure, POS, is defined as the percentages of experiments leading to any of the 
outcomes “S*” in Table 2.1.  

The OS robustness, POS, is thus a vector composed of 5 elements. 

 

2.3.1.2. OS Reaction Time 

This measure corresponds to the time for the OS to react to a system call in presence of 
faults, either by notifying an exception or by issuing an error code or by executing the 
required instructions (the result could be correct or not)..  

Also, the response time in the presence of faults can be evaluated with respect to each 
outcome of Table 2.1. Let these times be denoted respectively tSEr, tSXp and tSNS. They are 
counted from the instant where the modified system call is provided to the OS, up to the issue 
of the corresponding event by the OS, i) an error code return, ii) an exception notification, 
and iii) a response to a system call.  

Let texec be the reaction time in the presence of fault and τexec the average reaction time in 
absence of faults. 

2.3.1.3. OS Restart Time  

 The duration of a restart is a very important measure for the designers of critical applications 
because during this time the system is unavailable. Although under nominal operation, the 
OS restart time is almost deterministic, it may significantly be impacted by the corrupted 
system call. The OS might need additional time to make the necessary checks and recovery 
actions, depending on the impact of the fault being applied. 

Let tres be the restart time in the presence of fault and τres the average restart time in absence 
of faults. 

2.3.2. Workload Measures and Comprehensive Combined Measures 

Observation of the workload final state helps identifying the impact of the OS on the 
workload. We first define the states in which the workload could be after execution of the 
corrupted system call, and then define the OS and workload combined states. After that, we 
define workload benchmark measures.  

The workload is characterized by one of the following outcomes: i) the workload completes 
with correct results, ii) it completes with erroneous results, iii) the workload is aborted, or 
iv) the workload hangs. These outcomes are summarized in Table 2.2. Let WC refer to the 
case where the workload is in a completion state (WC = WCC U WEC), being it correct or 
erroneous. 

Clearly, the workload could end up in any of the four possible states of Table 2.2 irrespective 
of the outcomes SEr, SXp or SNS that can characterize the state of the OS. Conversely, 
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whenever the outcome SPc (Panic) is observed, this can only lead the workload to abort or 
hang, while an OS Hang leads necessarily the workload to hang. 

Table 2.3 presents the possible comprehensive states combining OS and workload states 
denoted (S* – W*). The most critical situation corresponds to the cases when the OS is in a 
No Signalling state while the workload is an erroneous completion state, SNS – WEC. 

Table 2.2: Possible workload outcomes 

WCC Correct completion 

WEC Erroneous completion 

WAb Abort 

WHg Hang  

 

Table 2.3: Possible combined outcomes 

↓ Workload 
SUB (OS) →

 Error code Exception Panic Hang  No signalling 

Correct completion SEr – WCC SXp – WCC — — SNS – WCC 

Erroneous completion SEr – WEC SXp – WEC — — SNS – WEC 

Abort SEr – WAb SXp – WAb SPc – WAb — SNS – WAb 

Hang  SEr – WHg SXp – WHg SPc – WHg SHg – WHg SNS – WHg 

 

The OS robustness measure, POS, can be refined using the distribution of the percentages of 
the workload outcomes when the OS is in state SNS. Let PSNS denote the associated 
dimension-4 vector. For sake of simplicity, PSNS is referred to as the workload robustness. 

The workload temporal measure of interest is the duration of workload completion, 
irrespective of the state of the SUB. Let tWC denote the time required for the workload to 
reach state WC in the presence of fault and τWC the workload average execution time in 
absence of faults. 

2.3.3. Summary of Measures 

Table 2.4 summarises the two robustness measures associated respectively to the OS being 
considered alone, and the OS combined with the workload. 

The temporal measures are evaluated as average times over all experiments categorized by a 
specific outcome. However, standard deviation, maximum and minimum values are also of 
prime interest.  

Let Texec, TSEr, TSXp, TSNS, Tres and TWC denote respectively the average times for the 
previously identified times.  
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Table 2.5 recapitulates these temporal measures. 

 

Table 2.4: Robustness measures 

Measure Definition 

POS  OS robustness 
Behaviour of the OS — vector of 5 elements 

PSNS Workload robustness 
Behaviour of the workload when the OS is in SNS— vector of 4 elements 

 

Table 2.5: Temporal benchmark measures 

Reaction time 

τexec Time for the OS to execute a system call, in the absence of faults 

Texec Time for the OS to execute a system call, in the presence of faults 

TSEr Time for the OS to return an error code in the presence of faults 

TSXp Time for the OS to notify an exception in the presence of faults 

TSNS System call execution time when the OS is in state SNS, in the presence of faults 

Restart time 

τres Duration of OS restart in the absence of faults 

Tres Duration of OS restart in the presence of faults 

Workload execution time 

τWC Duration of the workload execution in the absence of faults 

TWC Duration of the workload execution in the presence of faults 

2.3.4. Basic and Complementary Measures 

Performance benchmarks usually evaluate only one or two measures. It can be considered 
that our benchmark evaluates two sets of measures: 

• The first set is composed of POS, Texec and Tres.  

• The second set corresponds to the other measures of Tables 2.4 and 2.5.  

From our point of view, the first set constitutes the basic set of measures for characterizing 
the OS in the strict sense. The second set includes measures that are not mandatory and can 
be considered as complementary measures. Complementary measures concern either the OS 
(TSEr, TSXp, TSNS), they can be used to provide more refined information on its behaviour, 
or the workload measures (PSNS,TWC).  

Specific benchmark implementations may simply ignore measures that are of less interest 
(from the basic or complementary set) and the associated information does not need to be 
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recorded. However, it is worth to mention that, except for PSNS that requires additional 
analyses, all the other measures in Tables 2.2 and 2.3 do not require any specific analysis and 
effort to be implemented as we will show in the next section. 

2.4. Experimental Dimensions 

In the case of performance benchmarks, the benchmark execution profile is simply a 
workload that is as realistic and representative as possible for the system under test. For our 
general-purpose OS dependability benchmark, the execution profile includes in addition 
corrupted parameters in system calls. The set of corrupted parameters is referred to as the 
faultload. We aim at modifying the parameters of the system calls activated by the workload 
to simulate the erroneous parameter values that the application processes could communicate 
to the OS. 

From a practical point of view, the faultload can be either integrated within the workload 
(i.e., the faults are embedded in the program being executed) or provided in a separate 
module. For enhanced flexibility, we made the latter choice: the workload and the faultload 
are implemented separately, which allows for a better portability of the faultload. As a 
consequence: i) the same faultload can be applied with different workloads, and ii) any 
available performance benchmark workload can be used.  

In our benchmark, we use the workload of TPC-C client, but we do not use the performance 
measures specified by TPC-C as they are far from being suitable to characterize the 
behaviour of an OS.   

In the sequel, we concentrate on the specification of the faultload and more precisely on the 
technique for corrupting the system call parameters, and the selection of the set of system 
calls to be corrupted. Then we address the measurements to be performed on the system 
during the experiments in order to derive the benchmark measures (basic and complementary 
measures). 

2.4.1. Parameter Corruption Technique 

We use a parameter corruption technique similar to the one used in [Koopman et al. 1997], 
relying on a thorough analysis of system call parameters to define selective substitutions to 
be applied to these parameters. A parameter is either a data or an address. The value of a data 
can be substituted either by an out-of-range value or by an incorrect (but not out-of-range) 
value, while an address can be substituted by an incorrect (but existing) address (containing 
usually an incorrect or out-of-range data). We use a mix of these three corruption techniques.  

Annex 2-A provides some comparative results intended to explain and justify our choice of 
the retained parameter corruption technique. 

To reduce the number of experiments, the parameter data types are grouped into classes. A 
set of values is defined for each class. They depend on the definition of the class. For 
example, for Windows, we have grouped the data types into 13 classes. Among these classes, 
9 are pointer classes. Apart from pvoid (pointer which points to anything), all other pointers 
point to a particular data type. Substitution values for these pointers are combination of 
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pointer substitution values and the corresponding data type substitution values. Table 2.6 
reviews the substitution values associated with the most used data type classes. 

Table 2.6: Parameter substitution values per data type class 

Data type class Substitution values 

pvoid NULL 0xFFFFFFFF 1 0xFFFF Random 

integer 0 1  (MAX INT) (MIN INT) 0.5 

unsigned integer 0 1 0xFFFFFFFF -1 0.5 

boolean 0 0xFF (Max) 1 -1 0.5 

string Empty Large (> 200) Far (+ 1000)   

 

2.4.2. System Calls to Be Corrupted 

Ideally, and without any time limitation, all system calls used in the workload with 
parameters should be corrupted. For small workloads this might be possible. However, for 
workloads such TPC-C client, more than 100 system calls are involved, with several 
occurrences in the program, this would require several weeks of experimentation. In addition, 
all system calls are not necessarily interesting to be corrupted. For practical reasons, one has 
to target a subset of system calls. This selection depends on the nature of system calls that are 
worth to corrupt and the accepted benchmark experimentation duration. The benchmark 
duration depends on the duration of each experiment and on the number of experiments to be 
performed. The latter depends on i) the number of system calls to corrupt, ii) the number of 
parameters to corrupt in a system call and iii) the number of substitution values associated to 
each parameter. From our experience on Linux and Windows, an experiment lasts on average 
less than 5 minutes. Using a fully automated benchmark set-up, approximately 1400 
experiments can be run in 5 days. This leads to consider 40 to 60 system calls to be corrupted 
(depending on the number of parameter substitutions) for a 5-day fully automated benchmark 
execution.  

The first step in choosing system calls whose parameters will be corrupted consists in 
identifying all system calls used in the workload as well as their occurrences. In order to 
insure portability of the faultload, our recommendation is to use the criticality of OS 
functional components as a selection criterion. Selection of system calls associated to specific 
functional components facilitates comparison between OSs that are not from the same family 
(e.g, with distinct APIs). Indeed, even though OSs do not necessarily comprise exactly the 
same system calls, most OSs feature comparable functional components.  

Our benchmark targets the following functional components that we have identified as the 
most critical for a general-purpose OS: Processes and Threads, File Input/Output, Memory 
Management and Configuration Manager. 
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2.4.3. Measurements 

The number of substitutions determines the number of experiments. The experiments are 
achieved independently and the system is restarted after each experiment. To assess the 
benchmark measures defined in Tables 2.4 and 2.5, several measurements have to be 
performed on the system during each experiment, related to the OS and to the workload states 
and temporal behaviour.  

At the SUB level, after each experiment run: 

• The state of the OS is to be recorded. In states SEr, SXp and SNS, the OS is alive and 
delivers explicit information to the workload. These states can be recorded easily, along 
the time required to the OS to provide the information to the workload (respectively 
tSEr, tSXp and tSNS). The panic and hang states can only be reliably diagnosed and 
recorded by a remote machine ( refered to as the Benchmark Controller — see Section 
2.5). The latter is part of the Benchmark Management system. 

• The system restart duration time tres is measured.  

Hence for each experiment, the OS state and restart duration are to be recorded. In addition, 
states SEr, SXp and SNS, the associated times can optionally be recorded to evaluate more 
refined measures. 

After running the whole set of experiments, POS (the dimension-5 OS robustness vector) and 
Tres (the average restart time) can be evaluated, as well as the average OS reaction times 
Texec, TSEr, TSXp and TSNS. 

At the workload level, after each experiment run, the workload state is recorded as well as the 
workload completion time. After running the whole set of experiments, the workload 
robustness PSNS (the dimension-4 vector for combined benchmark measures), and the 
(average) workload execution time TWC are evaluated. 

2.5. Benchmark Prototype 

In this section, we present the dependability benchmark prototype that was implemented for 
Windows family.  

First, we describe the system under benchmark and the execution profile defined. Then, we 
detail how the operating system benchmark specifications presented in the previous sections 
was implemented.  

2.5.1. Systems Under Benchmark 

The considered SUB is made up of the operating system running on x86 hardware. In the 
architecture of Windows, the application processes call OS services through one or more 
environment subsystem Dynamic Link Libraries (DLLs). The role of an environment 
subsystem is to expose a subset of the base Windows 2000 executive system services to 
application programs. The Win32 environment subsystem DLLs (such as kernel32.dll, 
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Advapi32.dll, User32.dll, and Gdi.dll) implements the Win32 API functions. Although 
Windows 2000 was designed to support multiple programming interfaces, Win32 is its 
primary and preferred interface. Moreover, Windows 2000 cannot run without the Win32 
environment subsystem [Solomon and Russinovich 2000]. Consequently, this is the 
considered interface on which the faultload is applied. 

2.5.2. Execution Profile  

The TPC-C client implementation used in the current benchmark set-up is the same as the 
one used by other DBench partners (see e.g., [Vieira and Madeira 2003] and Chapter 5). The 
workload of TPC-C client activates 132 system calls (with parameters). The considered 
functional components (Processes and Threads, File Input/Output, Memory Management and 
Configuration Manager) use 28 system calls, for which 75 parameters have been corrupted 
leading to run 552 experiments using the benchmark experimental set-up presented hereafter. 
Annex 2-A shows that for the three OSs considered, the selected system calls lead to the 
same benchmark comparison result as when considering all the 132 system calls of TPC-C 
client. 

2.5.3. Experimental Set-up and Benchmark Conduct 

As it was already pointed out, since perturbing the operating system may lead the OS to 
hang, a remote machine is required to reliably control the benchmark experiments. 
Accordingly, for running an OS dependability benchmark we need at least two computers: 
i) the Target Machine (TM) for hosting the benchmarked OS and the workload, and ii) the 
Benchmark Controller (BC) that is primarily in charge of diagnosing and collecting data in 
case of a hang or an abort (see Tables 2.1 and 2.2). Furthermore, as we are using a TPC-C 
client as workload in the TM, the Data Base Management System (DBMS) is needed to 
process the TPC-C client requests. We used a third machine with Oracle DBMS for that 
purpose.  

Figure 2.1 illustrates the various components that characterize the proposed OS dependability 
benchmark prototype. These components are executed on the TM that is running the 
benchmarked OS, and on the remote BC machine. The two machines are connected via an 
Ethernet network.  

The Benchmark Management System referred to in Chapter 1 is therefore composed of the 
benchmark controller, the interceptor and the Data Base Management System (DBMS). 
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Figure 2.1. Experimental set-up 

 

 

To intercept the Win32 functions (i.e., system calls), we have modified the “Detours” tool 
[Hunt and Brubaher 1999], a library for intercepting arbitrary Win32 system calls on x86 
machines. This modification was made to facilitate replacement of system call parameters by 
substitution values. Also, we have added several modules in the library to observe the 
reactions of the OS after parameter substitution, and to retrieve the required measurements.  

At the beginning of each experiment, the target machine records the experiment start instant 
tExpStart and sends it to the BC along with a notification of experiment start-up. The workload 
starts its execution. The Observer module of the Interceptor records the start-up instant of the 
workload tWStart, the activated system calls and their resultant responses in the experiment 
execution trace. This trace collects also the relevant data concerning states SEr, SXp and 
SNS. The recorded trace is sent to the BC at the beginning of the next experiment. 

The Injector module of the Interceptor checks whether the current system call is the system 
call in which a parameter is to be corrupted. If this is not the case, the execution is simply 
resumed. Otherwise, the execution is interrupted, a parameter value is substituted and then 
the execution is resumed. At the end of the execution of the TPC-C client, the SUB notifies 
the BC of the end of the experiment by sending an end signal along with the experiment end 
instant, tExpEnd.  

When the workload does not complete (e.g., in case of a hang), then tExpEnd is mainly 
governed by the value of a watchdog timer that controls the monitoring of the workload 
execution.  

The experiment steps are illustrated in Figure 2.2-a in case of workload completion. 
Figure 2.2-b shows the experiment steps in case of workload Ab/Hg (i.e., without workload 
completion). 
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Figure 2.2. Benchmark execution sequence and temporal measures

Each experiment requires the following steps:

• The system call is intercepted and interrupted.

• A parameter is replaced by a substitution value.

• The execution of the intercepted system call is resumed and the instant of resumption
tResume is saved in the experiment execution trace.

• The state of the OS is monitored so as to diagnose one of the possible outcomes (SEr,
SXp, SNS). The corresponding OS response time (tResponse) is recorded in the
experiment execution trace.

• The system is restarted.

For each run, the OS reaction time (either tSEr, tSXp or tSNS) is calculated as the difference
between tResponse and tResume.

The BC collects the SHg state of the SUB and WAb and WHg states of the workload. It is in
charge of restarting the SUB in such occurrences. The average time necessary for the OS to
execute the TPC-C client is about 70 seconds when no faultload is applied. We have currently
fixed a maximum delay of 5 minutes (counted from the instant when the BC receives the signal
of the start of the execution, tWStart), during which the workload is expected to be executed. If
at the end of this delay the BC has not received the end signal from the OS, it then attempts to
connect to the OS. If this connection is successful, then a workload abort/hang state is
diagnosed, otherwise SHg is assumed. Thus tExpEnd specifies either the completion of the
workload or the triggering of the watchdog timer. In case of workload completion, the
workload execution time (see Table 2.5) is calculated with reference to the launch of the
workload at time tWStart.

Finally, the OS restart time for experiment n-1 is determined as the difference between tExpStart

of experiment n and tExpEnd of experiment n-1.
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2.6. Results 

The benchmark and the prototype defined in the previous sections are used to compare the 
behaviour of Windows NT4, 2000 and XP [Kalakech et al. 2004a]. Let us recall that the 
faultload used in the benchmark addresses the 28 system calls invoked by the four Windows 
functions that we have identified as the most critical ones. For these system calls, 75 
parameters have been corrupted in several ways, leading to 552 corrupted system calls. 
Hence the number of experiments in the benchmark is 552. 

In this section, we present the results related to the basic set of benchmark measures defined 
in Section 2.3.4 (OS robustness, OS reaction and restart times). These measures give 
information on the global behaviour of the OSs. Annex 2-B shows how they can be refined 
taking into account the complementary set of measures defined in Section 2.3.4. 

2.6.1 OS Robustness 

The OS robustness is given in Figure 2.3. No panic and hang states were observed for the 
three OSs. Exceptions have been notified in 11.4 % to 12 % of the cases, while the number of 
experiments with error code return varies between 31.2 % and 34.1 %. More than half of the 
experiments lead to a no signalling outcome. Figure 2.3 shows a similar behaviour for the 
three OSs with respect to robustness (the larger difference is observed for the no signalling 
case, it is less than 3%). 

It could be argued that robustness is sensitive to the parameter corruption technique used as 
well as to the system calls selected. We have made a sensitivity analysis with respect to these 
two elements. This analysis confirmed the equivalence of the three OSs with respect to the 
OS robustness measure (see Annex 2-A). 
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Figure 2.3: OS Robustness measure 

2.6.2 OS Reaction Time 

The OS reaction time in the absence of faults,  τexec, is evaluated as the average reaction 
times of the 28 selected system calls whose parameters are being corrupted for the 
experiments. Table 2.7 shows that, in absence of fault, the three OSs have different reaction 
times.  
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The OS reaction time, Texec, corresponds to the average reaction time of the selected 28 
system calls in the presence of faults. Table 2.7 shows that the shortest time is obtained for 
Windows XP while the longest one corresponds to Windows 2000. For Windows XP, this 
time is slightly larger than the reaction time in absence of faults while it is significantly lower 
for the two others. This may be explained by the fact that in about 45% of cases the OS 
detects the injected fault. It does not execute the faulted system call and returns an error code 
or notifies an exception. The standard deviation is significantly larger than the average for the 
three OSs. Annex 2-B will provide more detailed information to explain the various 
behaviours. 

Table 2.7: OS reaction time 

 Windows NT4 Windows 2000 Windows XP 

 Average  St. deviation Average  St. deviation Average  St. deviation 

 τexec         344 µs       1782 µs        111 µs 

Texec 128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs 

 

2.6.3 System Restart Time 

The system restart time is given in Table 2.8 which shows that Windows XP restart time is 
70% of that of Windows 2000, without fault and 73% of this time in the presence of faults. 
For all systems, the restart time is only few seconds larger than without faults. The standard 
deviations are small. 

Table 2.8: System restart time  

 Windows NT4 Windows 2000 Windows XP 

 Average  St. deviation Average  St. deviation Average  St. deviation 

τres 92 s 105 s 74 s 

Tres 96 s 4 s 109 s 8 s 80 s 8 s 

 

2.6.4 Result Summary  

The above results suggest that Windows XP is equivalent to Windows NT4 and 
Windows 2000 from the robustness point of view, but has shorter reaction time as well as 
shorter restart times, both with and without faults.  

The results related to time measures are in conformance with the statement provided by 
Microsoft. When Windows XP is installed, the following message is displayed:  

"Your Computer will be faster and more reliable1 

                                                 

1  It is worth to mention that the term "reliability" as defined in the above statement is different from the 

robustness measure evaluated in our dependability benchmark. 
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Windows XP professional not only starts faster than any previous version, but it also runs your 
programs more quickly and reliably than ever. If a program becomes unstable, you can close it 
without having to shutdown Windows". 

2.6.5. Time Needed to Develop and to Run the Benchmark  

Developing and running an OS dependability benchmark require some effort that is, from our 
point of view, relatively affordable. In our case, most of the effort was spent in defining the 
concepts, working on faultload definition and studying its representativeness.  

The implementation of the benchmark itself was not too much time consuming. It took us 
less than one month, spread as follows:  

• The installation of the TPC-C client took three days (as stated earlier, the 
implementation used in the current set-up is the same as the one used in Chapter 5).  

• The implementation of the different components of the controller took about two 
weeks, including the customisation of the “Detours” tool.  

• The implementation of the faultload took one week, during which we have i) defined 
the set of the values related to the 28 system calls with their 75 parameters to be 
corrupted and ii) created the database of the corrupted values. The same database is 
used for the three Windows OSs. 

The benchmark execution time for each OS is two days.  

Indeed, the duration of an experiment with workload completion is less than 3 minutes 
(including the time to workload completion and the restart time), while it is about 7 minutes 
without workload completion (including the workload watchdog timeout of 5 minutes and 
the restart time). Thus, on average, an experiment lasts less than 5 minutes. Let us recall that 
552 experiments have been performed for each OS (Cf. Section 2.5.2). There experiments are 
fully automated. The whole benchmark execution duration is thus about 46h for each OS. 
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2.7. Benchmark Validation 

The OS dependability benchmark specified, implemented and used in the previous sections is 
a robustness benchmark with respect to erroneous system calls sent by the application 
software to the OS. The execution profile has been defined in such a way that the workload 
and the faultload are implemented as separate modules. The faultload consists in substituting 
the correct values of system call parameters by erroneous values using an interceptor module. 
The latter runs between the application layer and the OS API layer. The results obtained for 
the three Windows OSs do not contradict the a priori common knowledge about the three 
OSs. As the OSs belong to the same family, it is not surprising that their robustness with 
respect to the selected faultload is similar. On the other hand, the OS reaction time and restart 
time show that Windows XP is faster than Windows NT and Windows 2000 and do not 
contradict the information provided by Microsoft.  

Of course, it will be interesting to use another workload to check the validity of the obtained 
results. In particular, OS performance benchmarks, such as lmBench [McVoy and Staelin 
1996], that is based on workloads specifically dedicated to general purpose OSs, are good 
candidates and could be investigated.  

Moreover, the validation of the concepts requires implementation of the benchmark 
specification to another OS family. We are currently modifying the developed prototype to 
benchmark Linux. 

In addition to the above considerations, validation of the benchmark specifications and 
implementation should address the properties stated in Chapter 1: representativeness, 
repeatability and reproducibility, portability, scalability, and non-intrusiveness. These 
properties are addressed successively in the rest of this section. 

2.7.1. Representativeness 

Representativeness concerns the benchmark measures evaluated, the workload and the 
faultload. 

Regarding measures, we emphasize that the three basic measures evaluated in our OS 
dependability benchmark are of interest to a system developer (or integrator) for selecting the 
most appropriate OS for his/her own application. The basic set gives information on the OS 
state and temporal behaviour (reaction and restart times) after execution of a corrupted 
system call. The three basic measures can be refined using information of the workload state 
(this is illustrated in Annex 2-B).  

We have selected a workload that is well known and commonly used for transactional 
systems. However, as stated earlier, other workloads should be used to check the validity of 
the results. Nevertheless, the selection of any other workload does not affect the concepts and 
specifications of our benchmark. We expect to investigate other workloads. Indeed, we 
preferred putting emphasis on faultload representativeness as shown herefater. 

The faultload is without any doubt the most critical dimension of the OS benchmark and 
more generally of any dependability benchmark. In our work [Jarboui et al. 2002], we have 
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used two techniques for system call parameter corruption: the bit-flip technique consisting in 
flipping systematically all bits of the target parameters (i.e., flipping the 32 bits of each 
parameter considered) and the selective substitution technique described in Section 2.4.1. 
This work was performed for Linux and allowed us to conclude the equivalence of the errors 
provoked by the two techniques. The application of the bit-flip technique requires much more 
recurrent time (i.e., experimentation time) compared to the application of selective 
substitution technique. Indeed, in the latter case, as shown in Section 2.4.1, the set of values 
to be substituted is simply determined by the data type of the parameter. Therefore, this set 
leads to a more focused set of experiments. Additionally, Annex 2-A shows that the 
benchmark results obtained using the selective substitution technique are very similar to 
those obtained using the bit-flip for Windows 2000, as well. 

We have thus preferred the selective substitution technique for pragmatic reasons: it allows 
derivation of results that are similar to those obtained using the well-know and accepted bit-
flip fault injection technique, with much less experiments.  

As a consequence, the benchmark presented in this chapter is based on selective substitutions 
of system call parameters to be corrupted.  

2.7.2. Repeatability and Reproducibility 

An OS dependability benchmark is composed of a series of experiments. Each experiment is 
run after system restart. The experiments are independent from each other and the order in 
which the experiments are run is not important at all. Hence, once the system calls to be 
corrupted are selected and the substitution values defined, the benchmark is fully repeatable. 
We have repeated our first benchmarks three times to check for repeatability. 

We have not checked explicitly and directly the reproducibility of the benchmark results. 
However, the comparison results obtained for fault representativeness increases our 
confidence in reproducibility. The benchmark comparison results seem to be independent 
from the technique used to corrupt system call parameters. Also, the results seem to be not 
affected by the system calls involved. This makes us confident about reproducibility. 
However, more verification is still required. 

2.7.3. Portability 

Portability concerns essentially the faultload (i.e., it applicability to other OS faminlies).  

At the specification level, in order to insure portability of the faultload, the system calls to be 
corrupted are not defined by name. They are specified with respect to the criticality of OS 
functional components, because OSs from different families do not necessarily comprise 
exactly the same system calls. They may have different APIs. However, most OSs feature 
comparable functional components. 

At the implementation level, portability can only be insured for OSs from the same family 
because different OSs families have different API sets.   
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Our prototype is portable across the Windows OS family that shares the Win32 API used in 
our experiments. 

2.7.4. Non-intrusiveness 

The corrupted parameters are inserted instead of the correct ones, without introducing any 
modification in the target kernel. However the library has been modified in two ways: 
i) interception of Win32 functions required the use the Detours Library and ii) the 
observation of the OS reaction required additional modules in the Library. 

2.7.5. Scalability 

Usually, the functionalities of general purpose OSs are comparable, leading most likely to 
comparable numbers of system calls whose parameters are to be corrupted (or at least of the 
same order of magnitude). If it happens that more system calls are involved for some OSs, 
the concepts of the OS benchmark remain unchanged but more experiments may be required. 
It is worth to recall that an experiment lasts on average less than 5 minutes. Scalability is thus 
not a real problem in this case. 

2.8. Conclusion 

In this chapter we have presented the specifications of a dependability benchmark of general-
purpose operating systems and an example of an implementation prototype used to 
benchmark Windows NT4, 2000 and XP.  

The benchmark addresses the user perspective. The OS is considered as a black box and the 
only required information is the description of its API. We put emphasis on the OS 
robustness as regards application induced erroneous behaviours. We have defined two sets of 
benchmark measures (basic and complementary). We have illustrated how these measures 
complement each other in Annex 2-B.  

The benchmark has been defined so that the workload executed on the OS can be any 
performance benchmark workload (and, more generally, any user tailored application) 
intended to run on top of the benchmarked OS. We have used a TPC-C client.  

The comparison of the three OSs showed that i) they are equivalent from the robustness point 
of view and that ii) Windows XP has the shortest reaction and restart times. Sensitivity 
analyses with respect to the parameter corruption technique and to the system calls to be 
corrupted (performed in Annex A) showes that, even though for each OS the robustness is 
slightly impacted by the technique used and the system call considered, the three OSs are 
impacted similarly and remain equivalent. 

In addition to the comparison of the three OSs, the results presented in Annex 2-A showed 
that using a reduced set of experiments (113) targeting only out-of-range data has led to 
results similar to those obtained from the 552 initial experiments targeting additionally 
incorrect data and addresses. If this is confirmed for other operating system families, this 
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would divide the benchmark execution duration (that is proportional to the number of 
experiments) by almost 5, which is substantial. We will further investigate this issue.  

The results allowed us to confirm that the specifications can be implemented and to illustrate 
the kind of results that could be obtained from such a benchmark.  

The specifications, the prototypes and the results could be improved and should be enhanced 
towards several directions. In particular, i) we have to investigate the impact of other 
workloads on the results for the same OSs and i) we have to validate the results with respect 
to other OSs from different families, e. g., using POSIX API. 
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Annex 2-A Faultload Validation 

Let us recall that the faultload used in the benchmark and results presented in this chapter 
includes a mix of three parameter corruption techniques (see Section 2.4.1): i) out-of-range 
data, ii) incorrect data and iii) incorrect addresses. In total 552 corrupted values for the 75 
parameters related to the 28 selected system calls (see Section 2.5.2). This faultload is 
referred to as FL0. 

In this Annex, we first analyse the impact of these three parameter corruption techniques on 
the benchmark results. Then, we present a comparative analysis between the results obtained 
for the selective substitution technique and those obtained using a bit-flip corruption 
technique (see Section 2.7.1), for the same set of parameters. Finally, we make a sensitivity 
analysis with respect to system calls whose parameters are corrupted. These analyses are 
aimed at checking the validity of the parameter corruption technique retained and of the 
subset of functions whose parameters are corrupted. 

2-A.1 Impact of Parameter Corruption Technique  

It can be argued that incorrect data is not representative of application faults that should be 
detected by the OS. In order to analyse its impact on the benchmark results, we have 
considered a reduced faultload FL1 including only out-of-range data and incorrect addresses. 
Thus FL1 is composed of 325 corrupted values. Figure 2-A.1 gives the robustness of the 
three OSs using FL1. Comparing these results with those of Figure 2.3 shows that even 
though the robustness of each OS has been slightly affected by the corruption technique used, 
the three OSs have still very similar robustness. As for Figure 2.3, the larger difference is 
observed for the No signalling case, it is less than 3%. 

Incorrect addresses usually point to out-of range or incorrect data. Taking a pessimistic view, 
let us assume that they only point to incorrect data and could be discarded too as in FL1. We 
have thus considered a faultload, FL2, comprising only out-of-range data (composed of 113 
corrupted values). Figure 2-A.2 shows that using FL2 also leads to similar robustness of the 
three OSs. Here also, the larger difference is observed for the No signalling case, it is less 
than 4.3%. 

Besides, the results corresponding to FL2 are very close to those corresponding to faultload 
FL0 used in our benchmark (Figure 2.3). More investigation is required to check the validity 
of this result with respect to more system calls and with respect to other workloads. Indeed, if 
this result is confirmed for other OS families, the number of experiments can be considerably 
reduced by using only out-of-range data.  

This result will allow corruption of the parameters of all system calls involved in the 
workload using only the out-of-range technique, without increasing significantly the 
benchmark run duration. This result will be used in Section 2-A.3. 
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Figure 2-A.1: OS Robustness, with respect to out-of-range data and incorrect addresses (FL1) 
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Figure 2-A.2: OS Robustness, with respect to out-of-range data (FL2) 

2-A.2 Bit-Flip Technique and Selective Substitution Technique  

The sensitivity of the robustness to the parameter corruption technique can be further 
analysed, using a bit-flip parameter corruption technique, referred to FL3. We use it here to 
corrupt the same set of 75 parameters in a systematic way (i.e., flipping the 32 bits of each 
parameter considered). This leads to 2400 corrupted values (i.e., 2400 experiments). The 
results are given in Figure 2-A.3 for Windows 20002. This figure shows that the OS 
robustness is very similar using the two parameter corruption techniques, which confirms our 
previous work on fault representativeness [Jarboui et al. 2002]. 
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Figure 2-A.3: Windows 2000 robustness with respect FL0 and FL3 

                                                 

2  Due to the fact that the three OSs exhibit the same behaviour with respect to the faultload used and the time 

required to perform the 2400 experiments, we have not made the experiments for Windows NT and XP. 
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It can thus be concluded that the three OSs present similar robustness results regardless of 
the parameter corruption technique used, when corrupting the same set of parameters of the 
same set of system calls used in the same workload.  

Our recommendation is to use a mix of the three corruption techniques as we did in Section 
2.4 and 2.5, to be in the safe side. Nevertheless, for Windows family, out-of-range data give 
satisfactory results and the benchmark could include only out-of-range data.  

2-A.3 Impact of system calls considered 

In order to analyse the impact of system calls whose parameters are corrupted, we have 
corrupted the parameters of all the 132 systems calls with parameters, involved in TPC-C. 
Based on the results obtained above (Section 2-A.1), related to FL2 (out-of-range data) 
compared to FL0 (out-of-range data as well as incorrect data and addresses), we have 
considered only out-of-range data (FL2). 353 parameters have thus been corrupted and 468 
experiments have been performed for each OS. Let FL4 be this faultload. The results are 
given in Figure 2-A.4. 

They show the three OSs have similar robustness, when corrupting all system calls involved 
in TPC-C client workload. Here also, the larger difference is observed for the No signalling 
case, it is less than 5.3%. 
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Figure 2-A.4: OS Robustness, with respect to out-of-range data (FL2)  

for all the 132 system calls involved in TPC-C workload (FL4) 

It can be concluded that the results obtained for a subset of system calls related to the most 
critical functions of Windows (corresponding to Processes and Threads, File Input/Output, 
Memory Management and Configuration Manager) are similar to those obtained when 
considering all system calls. This is why we have targeted these four main functions for 
Windows family. 

Table 2.4.1 summarises the experiments performed for benchmark validation 
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Table 2-A.1: Summary of experiments performed for benchmark validation 

 

 
 

Incorrect data 
 

Incorrect 
address 

Out-of-range 
data 

Systematic Bit-
Flip # System calls # experiments 

FL0 x x x  28 552 

FL1  x x  28 325 

FL2   x  28 113 

FL3    x 28 2400 

FL4   x  All (132) 468 
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Annex 2-B Benchmark Measure Refinement 

This Annex is intended to show how the benchmark basic measures related to the OS in the 
strict sense can be complemented and refined based on the complementary set of measures. 
We will show how the results presented in Section 2.6 can be enriched, by examining 
additional information that can be provided by the current benchmark prototype. 

We will consider successively the three benchmark measures (robustness, OS reaction time 
and restart time).  

2-B.1 Robustness  

The current benchmark prototype does not allow distinction between the workload correct 
and erroneous completion states. Additional instrumentation is required to do so. Also, we do 
not distinguish between Abort and Hang states for sake of simplicity. Hence, lines 3 and 4 of 
Tables 2.2 and 2.3 are grouped. 

Table 2-B.1 gives the number of experiments that led the workload to the associated state 
(workload completion, WC and workload Abort/Hang).  

Table 2-B.1: Number experiments and workload states 

 Windows NT4 Windows 2000 Windows XP 

WC 451 445 424 

WAb/WHg 101 (18.3%) 107 (19.4%) 128 (23.2%) 

 

Table 2-B.2 gives the combined state occurrences. It shows that: 

• After an error code issue, the workload is an Abort/Hang state in 25% (46 / 182) of 
cases for Windows NT (resp. 28% and 42 % for Windows 2000 and XP).  

• After an exception notification, the workload is an Abort/Hang state in 12% of cases for 
Windows NT (resp. 9% for Windows 2000 and XP).  

The latter result shows that even though the TPC-C benchmark is intended to exercise the 
system by submitting transactions and is not intended to process exceptions, only a small 
number of experiments lead to Workload Abort/Hang after notification of an exception. This 
percentage is higher after an error code issue.  

The right most column gives the workload robustness PSNS (as defined in Table 2.4), that is 
composed of two elements in this case. When the OS is in the SNS state, the workload is in 
the Abort/Hang states in about 16 % of cases, for the three OSs. This result substantiates the 
equivalence of the three OSs. 
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Table 2-B.2: Number of combined state occurrences 

↓ Workload 

Windows NT4→
 Error code  (182) Exception        (66) Panic Hang No-signalling               

(304) 

Workload completion 136 58  — 267 

Abort / Hang  46 8 0 0 47 

 

↓ Workload 

Windows 2000 →
 Error code  (188) Exception        (63) Panic Hang No-signalling               

(301) 

Workload completion 136 57 — — 252 

Abort / Hang  52 6 0 0 49 

 

↓ Workload 

Windows XP →
 Error code  (172) Exception        (63) Panic Hang No-signalling               

(317) 

Workload completion 99 57 — — 268 

Abort / Hang  73 6 0 0 49 

*  Non-decidable states 

2-B.2 OS Reaction Time  

The three last lines of Table 2-B.3 complete the information provided in Table 2.7. They give 
the OS reaction time with respect to OS outcomes after execution of a corrupted system call. 
It can be seen that i) the time to issue an error code is very short and comparable for the three 
systems, ii) the time to notify an exception is higher than that of error code issue but it is still 
acceptable for Windows NT4 and XP, but very large for Windows 2000 and iii) the largest 
execution time is obtained when the OS does not detect/signal the error (SNS).  

 
Table 2-B.3: Detailed OS reaction times  

 Windows NT4 Windows 2000 Windows XP 

 Average  St. deviation Average  St. deviation Average  St. deviation 

τexec          344 µs       1782 µs        111 µs 

Texec  128 µs 230 µs 1241 µs 3359 µs 114 µs 176 µs 

TSEr 17 µs 18 µs 22 µs 28 µs 23 µs 17 µs 

TSXp 86 µs 138 µs 973 µs 2978 µs 108 µs 162 µs 

TSNS 203 µs 281 µs 2013 µs 4147 µs 165 µs 204 µs 

 

The very high standard deviation is due to a large variation around the average. Figures 2-B.1 
to 2-B.3 confirm this variation. They identify the system calls that led to each of the above 
outcomes and give the associated average reaction time in the presence of faults.  

Figure 2-B.1 shows the different system calls that have generated an error code, with the 
average error code generation time of each of them. Globally, we see that these average times 
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are very close to the global average TSEr (indeed, the standard deviation is smaller than the 
average in this case). 
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Figure 2-B.1: Detailed OS reaction time, in SEr, with respect to system calls 

 

Figure 2-B.2 gives the system calls for which an exception was notified with the average 
notification time of each of them. The large standard deviation seems to be due to 
GetPrivateProfileStringA.  
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Figure 2-B.2: Detailed OS reaction time, in SXp, with respect to system calls 

Figure 2-B.3 gives the system calls for which the corrupted parameter was not detected, 
leading to SNS. Here two system calls have largely contributed to the high standard 
deviation, GetPrivateProfileStringA and GetPrivateProfileIntA. 

These figures suggest that more analyses are required to explain the behaviour with respect to 
GetPrivateProfileStringA and GetPrivateProfileIntA system calls. However, if we 
re-evaluate the various average times without these two system calls, we can see in  
Table 2-B.4 that all system reaction times have been reduced compared to those of  
Table 2-B.3. Windows XP still has the shortest reaction times. 
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Figure 2-B.3: Detailed OS reaction time, in SNS, with respect to system calls 

Table 2-B.4: Reaction times without GetPrivateProfileIntA and GetPrivateProfileStringA 

system calls 

 Windows NT4 Windows 2000 Windows XP 

 Average  St. deviation Average  St. deviation Average  St. deviation 

τexec          323 µs      1054 µs          60 µs 

Texec 72 µs 180 µs 61 µs 96 µs 63 µs 120 µs 

TSEr 16 µs 18 µs 21 µs 28 µs 23 µs 16 µs 

TSXp 56 µs 60 µs 79 µs 76 µs 85 µs 127 µs 

TSNS 117 µs 241 µs 87 µs 120 µs 96 µs 146 µs 

 

2-B.3 System Restart Time  

Even though the system restart time in the presence of faults in not very different from the 
system restart time without fault, the plots of this time in presence of faults with respect to all 
experiments (given in Figure 2-B.4) show the existence of two distinct values.  

Careful analysis of the collected data suggests a correlation between the system restart time 
and the state of the workload. When the workload is completed, the average restart time is 
very close to the one obtained without fault injection, and when the workload is aborted or 
hangs, the restart time is 8% to 18% higher. Indeed, the number of experiments that led to 
workload abort/hang was respectively 101, 107 and 128 for Windows NT4, 2000 and XP. 
Even though Windows XP had induced more workload abort/hang, it still has the lowest 
system restart time as indicated in Table 2-B.5. The latter recalls in lines 1 and 2 the restart 
times without faults, τres, and in presence of faults, Tres, and refines Tres in the last two lines 
according to the workload state, i.e., completion or abort/hang, irrespective of the OS 
outcome.  
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Figure 2-B.4: Detailed OS restart times 

Table 2-B.5: System restart time according to the workload state 

 Windows NT4 Windows 2000 Windows XP 

τres 92 s  105 s  74 s  

Tres 96 s 109 s 80 s  

Tres after WL completion 95 s  106 s  76 s  

Tres after WL abort/hang 102 s  123 s  90 s  

2-B.4 Workload execution time 

Table 2-B.6 summarizes the time of workload completion without fault (τWC) and in the 
presence of faults (TWC). It can be noted that, compared to the workload execution time in 
absence of faults, the increase of workload execution time is 3% for Windows XP, 6 % for 
Windows 2000 and 8% for Windows NT. In addition the standard deviations are relatively 
small denoting small variations in workload execution time.  

Table 2-B.6: Workload execution times 

 τWC TWC Standard deviation 

Windows NT4 74 s 80 s 12 s 

Windows 2000 70 s 74 s 13 s 

Windows XP 67 s 69 s 10 s 

 




