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Abstract 
 

 
 

The selection of appropriate work- and faultloads is an important step when 
conducting  dependability benchmarking experiments. In this deliverable we 
first present basic definitions pertinent to the selection of work- and faultloads. 
Then we address  important challenges encountered when selecting appropriate 
work- and faultloads, e.g., representativeness, portability or implementability of 
the selected work- and faultload, etc.. 
 
In the second part of this deliverable examples of workloads and faultloads for 
the focussed areas are presented, viz. for transactional and embedded systems, 
in order to show the types of work- and faultloads that can be used in different 
benchmarking experiments.  We also include short descriptions of the con-
sidered applications and of the experiment platforms employed to make the 
examples more comprehensible. Our intention is to show that the process of 
selecting a work- and faultload is very sensitive to the experimental set-up and 
the goals of  benchmarking.  
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1 Introduction 
 
 
The selection of a ‘good’ work- and faultload is an important step (phase) when conducting a 
dependability benchmarking experiment. Here we will consider this load selection step only. 
Task T3.1 (deliverable BDEV1) deals with the issues of conducting dependability 
benchmarking experiments.  
 
A workload represents a typical execution profile for the considered application area, whereas 
a faultload represents a typical set of faults affecting the operation of the system. We consider 
work- and faultload as part of the stressload, which comprises, roughly speaking, all stressful 
conditions applied to the system under benchmarking. Of course, the selected stressload 
should reflect the actual conditions  encountered in the considered application area. 
 
On the one hand, widely accepted performance benchmarks can provide the basis for 
selecting application specific workloads. However, for dependability benchmarking this 
workload must be modified and extended. For example, it could take into account the impact 
of preventative and corrective maintenance actions evoked by the considered faultload. On the 
other hand, the selection of a faultload is a non-standard, rather pragmatic and less well 
understood task. As we will see, this gives rise to some serious challenges. In any case, it 
must be possible to tune both the workload and the faultload to closely match the “real” world 
situation.  
 
For selecting the work- and faultload it is important that the scope of a benchmark is well 
defined. Certain benchmarks may focus on the services provided by the target system. Then, 
for example, the services provided by the OS for the application have to be identified as well 
as the service provided by the application to the end-user. Or, the services delivered by a Data 
Base Management System (DBMS) are to be defined considering the transactional paradigm. 
These services provide the basis for defining appropriate work- and faultloads (and 
appropriate measures). Different benchmark scopes require different approaches. There are 
several ways of accomplishing this including, for example, having a set of smaller 
benchmarks targeting different application areas, conducting several benchmarking 
experiments targeting different system components or addressing different measures. For each 
approach the appropriate work- and faultload has to be specified. 
 
 
The Deliverable is structured as follows. In Section 2 we present basic definitions pertinent to 
the selection of work- and faultloads. Section 3 addresses some important challenges 
encountered when selecting appropriate work- and faultloads, and Section 4 addresses the 
topic of work- and faultload synchronisation. In  Section 5 some examples of workloads and 
faultloads for the focussed areas are presented, i.e., transactional and embedded systems. We 
present these examples in order to ilustrate the types of work- and faultloads that can be used 
in different benchmarking experiments. We also include short descriptions of the considered 
applications and of the experiment platforms in order to make the examples more 
comprehensible.  
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2 Definitions 
 
 
First we present several definitions pertinent to the selection of work- and fault loads for 
dependability benchmarking experiments (DBE). In general, a dependability benchmark 
specifies several DBE’s, and, hence, several work- and faultloads. 
 
 
2.1 Dependability Benchmarks 
 
A dependability benchmark is the specification of a procedure to assess measures related to 
the behaviour of a computer system or computer component in the presence of faults. The 
main elements of a dependability benchmark are: 
- Measures 
- Workloads 
- Faultloads 
- Procedures and rules 
 
In this way, a dependability benchmark consists of the specifications of the benchmark 
elements. This specification could be just a document. What is relevant is that one must be 
able to implement the benchmark (i.e., perform all the steps required to obtain the measures 
for a given component under benchmarking) from that specification. Obviously, the 
benchmark specification can include source code samples. In addition to the specifications, 
one can include into the set of benchmark elements also certain tools as something required to 
implement the benchmark.  
 
Dependability benchmarks compare the dependability of alternative or competitive systems 
according to one or several dependability attributes. To this end, the target system is described 
in a generic way as a set of components (including key components for dependability) that 
perform specific functions in the presence of a set of faults. Accordingly, the work- and 
faultload  are also described on a quite abstract level. To compare alternative solutions, the 
benchmark results can be used either to characterize system dependability capabilities in a 
qualitative manner or to assess these capabilities quantitatively. Of course, DBE’s use mainly 
fault injection to asses these capabilities. 
 
The scope of  so called internal fault injection experiments is to characterize the dependability 
of a system or a system component in order to identify weak parts. In this case it is necessary 
to know the system (and its faults) in more detail to make possible the evaluation of specific 
measures. Accordingly, internal fault injection experiments (FIE’s) require the selection of 
very specific faultloads which, for example, stress specific fault tolerance capabilities of 
certain system components. 
 
DBE’s aim at finding the best existing solution and the ‘best practice’ by comparison; internal 
FIE’s aim at improving an existing solution. Thus, DBE’s produce results obtained in a 
standard manner for public distribution that comply with the benchmark specification, while 
internal FIE’s produce results for internal use and are used mainly for system validation and 
tuning.  
 
A drawback of benchmarks is that they may not yield enough information for improvements; 
a drawback of internal experiments is that certain weak points may not get detected when 
looking at only one possible solution. Therefore, internal experiments and benchmarks can 
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complement each other. Comparing systems pinpoints to differences in their dependability 
and these differences may pinpoint to weak points in the systems architectures and 
organisations. (Note, that internal fault injection experiments my be used for comparison 
across systems as well, but in a more focused way than external benchmarks.) 
 
A benchmark must be as representative as possible for a given domain but, as an abstraction 
of that domain, it will always be an imperfect representation of reality. However, the aim is to 
find a useful representation that captures the essential elements of the given domain and 
provides practical ways to characterise the computer features that help the vendors/integrators 
to improve their products and help the users in their purchase decisions. An important step 
towards this goal is, of course, the selection of appropriate work- and faultloads. 
 
 
2.2 Benchmarking Phases 
 
A dependability benchmark and the conduction of DBE’s can be divided into several steps. In 
[CF2] and deliverable ETI1 we have identified three basic steps and defined scenarios for 
conducting benchmarks. These basic steps can be divided into phases. Any meaningful, 
documented sequence of phases defines a benchmarking process. Benchmarking processes 
can differ in the number and type of the employed phases. There are fundamental phases 
which can provide the basis for extensions and refinements, for example, selection of the 
benchmarking object and determination of the benchmarking objectives, analysis of required 
and available resources and costs analysis, determination of the measures, preparation of the 
benchmarking experiments, experimentation, and presentation of the results. The selection of 
work- and faultloads  is a sub-phase of the preparation phase. 
 
 
2.3 System Under Benchmarking and Dependability Benchmark Target 
 
We distinguish between  the system under benchmarking and the dependability benchmark 
target. 
  
System under benchmarking  is the system which is benchmarked. That is, on the system 
under benchmarking the measures of a benchmarking experiment are applied. 
 
Dependability benchmark target is the benchmarking object. It is the system or system 
component which is intended to be characterized by the benchmark. 
 
In the following we will use the abbreviations SUB and DBT for “System under 
Benchmarking” and “Dependability Benchmark Target”, respectively. 
 
The distinction between SUB and DBT is important since the DBT must not be the target for 
fault injections in a DBE, whereas it may very well be the target of fault injections for internal 
FIE’s. 
 
Thus, the DBT may be the SUB as such or a single component of the SUB. If the SUB is the 
DBT , only external faults (e.g. input or operator faults) can be considered. Moreover,  a 
dependability benchmark may target several components of the SUB or the same component 
focusing on different dependability aspects. Hence, a benchmark may define several benchmarking 
experiments with differing stressloads. 
 

 6



DBench                                                                                  Workload and Faultload Selection 

Finally, the dependability benchmarking configuration (DBC) is the complete set of system 
components and tools required to perform the dependability bechmarking experiments. 
 
 
2.4 Stressload  
 
As we see it, stressload is the set of "stresses" that can be introduced into the system. It is the 
entire load explicitly or implicitly applied to the SUB in a DBE. It includes the workload, the 
background load and the faultload. Their definitions are given below. 
 
Thus, a stressload comprises several components. Here, we provide generic definitions of 
these components. These definitions have to be refined in the context of the application areas. 
We see three different origins of stresses for a SUB: stresses of certain selected capabilities of 
the SUB, like stressing an scheduler or other "high level" capabilities of the OS. The second 
category are application-induced stresses that arise when a certain application uses the SUB 
capabilities to a high degree or induces errors in the behaviour of the SUB. Which capabilities 
are stressed is then of course highly application dependent. Hence, in this case it is important 
to define stressload with respect to the application itself. The third category is end-user 
interactions, this could be the requests to an application given by an end-user, like users 
making database requests. For an embedded system the "user", such as a human, might be 
replaced by the surrounding environment that might affect the sensors in the system giving 
rise to a high frequency of interrupts or faulty behavior.  
 
As mentioned, the three components making up a stressload are: workload, background load 
and  faultload. 
 
2.4.1 Workload 
 
The workload is the computational load  for the SUB. It can comprise, for example, a real 
application, a client workload produced by external clients who communicate with the SUB, 
or corrective and preventive maintenance actions. Thus, the definition of a workload depends 
on which system component is benchmarked, that is, on the DBT. In the case of a 
transactional server as DBT, the workload is the "request stream" arriving on network 
connection. For benchmarking operating system kernels the workload is the composition of 
the libraries and the application. On the other hand, benchmarking an entire operating system 
the library may be part of the DBT. (If the hardware is the DBT, also the operating system 
may be considered part of the workload. Benchmarking hardware, however, is not our goal.) 
 
Depending on the application and the benchmark scope, the workload can stress single system 
components as memory management or input/output devices, or it can stress the target system 
as a whole. Thus, it is highly  application dependent which components and capabilities of the 
system are stressed in a DBE.  For example for a switching system allowing processing of say 
up to 4000 subscribers, a realistic workload could be to simulate an increasing number of 
subscribers. 
 
We distinguish between synthetic, realistic and real workloads. 
 
Synthetic workloads can be random queries in a database table or a random sequence of 
system calls. A synthetic workload may be needed in case the application is known but not yet 
coded. Synthetic client workloads certainly make sense since they are easy to generate and to 
modify. Moreover, they can be adapted to a statistical mix of applications.  
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Realistic workloads are artificial but still reflect real situations. For example, a realistic 
workload may be a (benchmark) kernel, i.e. an extracted, computationally intensive part of a 
real application, or a deterministic or stochastic workload model. For example, for 
benchmarking a Transactional System, one may stochastically simulate the behaviour of 
clients accessing a model database.  
 
Real workloads are applications or suits of applications that the end-user is running, for 
example, a suit of numerical applications. Results of dependability benchmarking using real 
workloads are, in general, more dependable and accurate. 
 
2.4.2 Background Load 
 
The background  load is used to restrict the system resources available to the workload. For 
example, the background load could be a concurrent process running on the same system. The 
background load may be considered as part of the workload. We prefer, however, to 
distinguish the workload from the background load since the workload is, in general, an 
application determined by the user, whereas the background load (e.g., network traffic) may 
not always be under his control and its presence may not directly depend on the DBT. 
 
 
2.4.3 Faultload 
. 
Faultload is the set of faults, their intended location, insertion time and distribution in time 
and space to be inserted into the SUB. For benchmarking a system component, faults of the 
faultload are injected into system parts external to this component, the DBT, or induced by 
inputs.  

• Some examples  are: a) injection of faults in a device driver to evaluate the way the 
operating system (OS) behaves in the presence of a “mad” driver; b) injection of faults in 
the OS to evaluate a fault-tolerance layer at the application level; c) injection of faults in 
an application process (emulating a buggy application) to evaluate the probability of error 
propagation to other processes. [ETI3]. 

 
This is not to say that  the DBT must be faultfree, it may  contain, for example, design faults a 
priori or may get corrupted by injected faults. 
 
Also the faultload can be split into different parts: software faults (e.g., design faults in 
programs), operator faults, and hardware faults, which may be external to the SUB (external 
perturbations), or internal.  Network faults are examples of external faults; incorrect functions 
of internal system components are internal faults.  
 
Figures 2.4.1 – 2.4.5 show some examples for dependability benchmark targets,  stressloads 
and the rest of the SUB. Notice that the faultload is divided into several parts, e.g., operator 
faults, and faults injected into the operating system and into the hardware. For certain DBE’s 
not all parts of the faultload may be relevant. 
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In case of embedded systems, the DBT can be the application or the application and the Real 
Time Operating System (RTOS). These options are shown in Figures 2.4.4  and 2.4.5 . 
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Figure 2.4.4 Embedded  System . 
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3 Challenges in Selecting Workloads and Faultloads 
 
 
The basic questions of work- and faultload selection are: "What is considered an appropriate 
workload and what is a suitable faultload; what should be part of a good work- and faultload; 
how accurately can we represent the real world?” To answer these questions one is faced with 
some serious challenges. 
 
Generally speaking, the approaches to select appropriate workloads can be either object-
oriented, computation-oriented, or interaction-oriented.; the approaches to select suitable 
faultloads can be either function-oriented, structure-oriented, or statistics-oriented. 
 
 
3.1 Workload 
 
Widely accepted performance benchmarks can provide the basis for selecting application 
specific workloads also for dependability benchmarking.  
 
However, the uncritical use of existing unchanged performance benchmarks as workloads for 
dependability benchmarking is not always meaningful, because we do not only want to assess 
the performance but we also want to know whether the operations were performed correctly – 
even in the presence of faults, if the system is to be fault-tolerant. Existing performance 
benchmarks do not usually save or output results of operations in any way. The results only 
exist in volatile memory or registers until overwritten with the results of the next operation. 
However, for dependability benchmarking, it is essential to be able to compare the results of 
the benchmark to a set of results that are known to be correct. Otherwise the effects of faults 
on the system cannot be judged. Moreover, the checks must be performed outside of the SUB 
– or at least outside the fault injection target, e.g., by an external client - such that they are not 
invalidated by the faultload. Fortunately, some of the existing widely used performance 
benchmarks can be extended and modified in an appropriate way and preventive and 
corrective actions can be taken into account, whenever required.   
 
Although usage of real-world workloads is preferred, it can be useful to design realistic or 
pure synthetic ones as well. However, if one intends to benchmark COTS (software and 
hardware) as SUB’s, one only has access to their public interface when defining a realistic or 
synthetic workload. These interfaces are, for example, the system call interface for Operating 
Systems, input values from the environment for Embedded Systems, and SQL commands for 
Transactional Systems. 
 
 
3.2 Faultload 
 
The selected faultload for a specific dependability benchmarking experiment should be widely 
acceptable by the computing community. Also, it must be possible to implement it by 
appropriate fault injection techniques. Last but not least, it must be portable. 
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3.2.1 Faultload based on operator faults 
 
Concerning operator faults, although some faults are highly system dependent, the analysis 
made in [ETI3] shows, for example, that most of the operator faults can be found in several 
DBMS. Therefore, we consider here DBMS only. 
 
Operator faults in database systems are database administrator mistakes. End-user errors are 
not relevant, as the end-user actions do not affect directly the dependability of the system. 
From the functional point-of-view the DBMS administration can be defined as a set of core 
functionalities, namely: memory and processes, security, storage, database objects, and 
recovery mechanisms. A possible solution to define a portable faultload is to focus on the 
high abstraction level that corresponds to the core functionalities of DBMS administration. 
This functional abstraction level corresponds to the set of administration functionalities 
common to most of the DBMS. 
 
To define a faultload based on operator faults, the following set of steps must be followed:  
 

1)  Identify the administration tasks for each core administration functionality.  
2) Identify the operator fault types that may occur when executing each one of those 

administration tasks. 
3) Define weights to each fault type according to the number of times the correspondent 

administration task is executed (reasonable estimation of the frequency of each fault 
can be obtained by field data, using for example real database logs).   

4) Define the faultload as the exhaustive list of possible operator faults for all the types 
identified. The number of times a given fault type will appear in the faultload 
depends on the weights defined and each type must appear at least once. 

 
The reason why we propose an exhaustive list of possible faults (taking into account the list of 
administration tasks for the core administration functionalities) is that different systems can 
be fairly compared in terms of recoverability if all the possible causes for DBMS recovery are 
evaluated in the benchmark. It is worth noting that the limited number of administration tasks 
assures that even the exhaustive list of operator faults is within acceptable bounds considering 
the number of faults.  
 
It is important to note that some types of faults do not affect the system in a visible way 
concerning recovery. An example of these faults is the security class faults. When a database 
administrator introduces inadvertently a security fault the system continues to work normally 
until another person maliciously takes advantage from that to break into the system (this is a 
second event).  
 
 
3.2.2 Faultloads based on software faults 
 
As observed in [ETI3], Orthogonal Defect Classification (ODC) is based on software faults 
found in real programs and classifies software defects in a set of non-overlapping classes (the 
classification is based on the way faults have been corrected) [Chillarege 95].  ODC classes of 
faults can  be used as staring point for selecting a faultload, but as each class includes a very 
large number of possible faults a knowledgeable selection of the faults is necessary. 
 
Certain software faults can be simulated by corrupting system call parameters. That is to say, 
the fault is injected in the system call and then the system call is executed with this corrupted 
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data. The parameter values can be corrupted by i) issuing exhaustive bit-flips (e.g., 32 per 
parameter) or, ii) replacing them with invalid values.  

For benchmarking, software faults can also be generated, for instance by educated mutations 
[ETI3]. The main problem is to find  accurate emulations of specific high-level languages 
programming errors that are usually responsible for common software faults. For example, the 
key aspects of the G-SWIFT technique, introduced in [ETI3], are a library of low-level 
instructions patterns and mutations that relate to specific high-level faults in specific language 
constructs and structures, and a pre-processing step of the target application to generate a 
(large) number of mutants. The execution of each mutant represents the injection of a fault. 

Inserting software faults rises the problem of intrusiveness as they may change the behavior 
(timing) of the software. Hence, care has to be taken when interpreting the results of a DBE 
based on software faults.  

For internal FIE’s, inserting software faults (design faults) into existing software could be 
interesting for developers, who might want to test parts of the software in the presence of 
other faulty parts. Then, faults are injected in one software module to evaluate the behavior of 
other modules.  
 
 
3.2.3 Faultload based on hardware faults 
 
In task T2.2, deliverable [ETI2], we have identified a large number of physical faults and their 
representations at higher, logical levels. These representations allow us to inject ‘faults’ into 
the SUB by avoiding the necessity to generate the actual, physical faults. The basic idea is to 
find a common layer for injecting representations of hardware faults. The RT layer (register 
transfer level) is an appropriate one because it is possible to represent most types of fault at 
lower levels (HW level) on the RT level. So, taking into account that injecting faults into RTL 
emulates a high percentage of hardware faults, this technique is a good fault injection method. 
However, as has been seen in task T2.2, there are some hardware faults that can not be 
emulated using this technique. 
 
Hardware fault representations (in short, hardware faults) are specified by the following 
characteristics: type, location, and temporal characteristics. For example, when considering 
hardware faults, several injection locations can be chosen by a fault injection tool. (Note that 
these locations should be external to the DBT in order to benchmark the original, unmodified 
component.) Locations for faults that can be injected are, for example, CPU registers, code 
memory, data memory, or input signals. When injecting faults into the code memory, the fault 
can corrupt either the application code or the OS code.  
 
With regard to temporal characteristics of faults, hardware faults may be permanent or 
transient faults and can have a certain duration or appear intermittently. Permanent faults, 
such as a stuck memory bit or a bad block on a hard disk, remain in the system from their 
activation time until the end of the measurement run. Transient faults are like permanent 
faults, except for the fact that they disappear after a given duration. Transient faults, such as 
bit flips, are generated once and will disappear as soon as the bit is set to a new value. 
Intermittent faults are transient faults which are generated again and again at a given interval. 
 
Last but not least, hardware faults are also characterised by their rates of occurrence. It is a 
well known fact, that occurrence rates are very hard to come by. 
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When benchmarking computing systems such as networks or clusters or networks of clusters 
also wrong hardware configurations (in short, configuration faults) could be of interest. These 
configuration faults could be ‘injected’  as actual faulty configurations. However, we prefer to 
propose a dependability benchmark configuration that allows the emulation/simulation of  the 
systems, and, hence, allows to simulate the system configuration faults. 
 
 
3.2.4 Considered versus injected faults 
 
Ideally, when benchmarking a system all existing faults should be considered in the first 
place. However, what faults to incorporate in the faultload depends, for example, on whether 
an benchmarking experiment or an internal fault injection experiment is to be performed. For  
DBE’s the faultload should be related to overall dependability features and to the services of 
the SUB. For internal FIE’s one may inject only faults which are said to be tolerated to test 
the system for its fault-tolerance capabilities and for the performance loss caused by faults. 
Contrary, in some internal experiments no faults which are said to be tolerated are injected to 
improve the speed of the experiment campaign. Internal faults are mainly determined by the 
implementation of the target system. 
 
Thus, we have to distinguish between the set of recommended faults that should be considered 
in a benchmarking experiment and the actual faultload for the experiment. Among the 
recommended faults only a part may be “implementable”; other will not be injected because 
of time constraints, limited number of experiments, dangerousness (risk of data loss or 
hardware damage) etc. However, it is important that the benchmark also reveals whether or 
not the DBT behaves as expected also in the presence of certain faults that cannot be injected 
directly. In this case, it may be necessary that a simulation platform for the SUB is available.  
 
 
 
3.3 Representativeness 
 
 
The selected work- and faultload should be representative in order to closely match the “real” 
world situation. Also concentrating on representative fault classes only can help to reduce the 
complexity of the benchmarking process. 
 
Representative workloads for DBE’s, for example representative client workloads for 
Operating or Transactional Systems, already exist. One can choose among virtually hundreds 
of performance related workloads from the literature. For Embedded Control Systems general 
representativeness is more difficult to achieve. On the other hand, to achieve workload 
representativeness for special embedded areas may be straightforward.  
 
More important, the selection of a representative faultload is decisive for the success of a 
dependability benchmark. Hence, knowledge of the representativeness of faults is a pre-
requisite for selecting a suitable faultload.  
 
We admit that the issues of fault representativeness, (to what extent the errors induced are 
similar to those provoked by real faults?) and fault equivalence (to what extent distinct faults  
do lead to similar consequences, i.e., to similar errors and failures?) give rise to many 
problems [Arlat 2002]. Deliverable T2.2, [ETI2], focuses on this issues where in separate 
chapters the representativeness of  hardware faults and software faults for different systems as 
well as the representativeness of operator faults in Transactional Systems is addressed.  
 14
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Representativeness of software faults and representativeness of hardware faults have different 
flavors. Hardware faults are, in general, due to wear, production or external causes for which 
accepted fault models exist. Mobile and networked computers are particularly prone to 
external causes of failures. What makes these faults worth to be included in a representative 
faultload are their rates of activation in the considered operational environment. Therefore, we 
add here a few remarks on the role of fault rates when selecting representative hardware 
faults. For a more detailed discussion we refer to [ETI2]. 
 
As mentioned, the rates of hardware faults (and, perhaps, not only of hardware faults) are 
related to fault representativeness. Faults with high rates are, usually, more representative than 
faults with low rates. However, it depends on the scope of the benchmark. If the scope of the 
benchmark is to identify weaknesses, even faults with small rates may be important. If the 
scope is to evaluate availability, faults with high rates are important.  
 
Fault rates may be simply not available from the open literature. If, however, some data is 
available, further questions arise. If only few data are available, what about their 
representativeness? Can we use modeling (formal methods) and extrapolation to increase their 
representativeness? Is sufficient estimated data available? When the available data is 
insufficient it is, certainly, not enough to say: "it may happen so we inject the fault”. 
 
We feel that the concept of a “representative high level hardware fault” is particularly 
relevant for dependability benchmaking. A high level hardware fault may, for example, be 
called representative, if its investigation gives answers to the same question using different 
hardware systems. Hence, what is representative depends on the benchmarking goal. Let us 
look at a simple example. Assume we ask which web server crashes more often. I.e., the web 
server is our DBT. We wish to compare a SUB (of which the web server is a part) supported 
by hardware H1 to the same SUB supported by hardware H2. H1 has ECC-memory and not-
redundant disks; H2 has unprotected memory and RAID.  
 
Now, a high level hardware fault could be “web server crash due to storage faults”. 
Hopefully, the physical fault rates λpmem (e.g., of bit-flips) and λpdisk are the same for both 
hardware systems. (We assume here that both systems are based on the same technology.) 
However, the failure rate of the memory, λmem,  is 0 for H1 and the failure rate of  the disk 
system, λdisk,  is  0 for H2. Nevertheless, the high level hardware fault “web server crash due 
to storage faults” may have identical rates for H1 and H2, if λdisk for H1 is equal to λmem  for 
H2. In this case, both systems are equally good with respect to a benchmark (taking the view 
of the application), but not with respect to an internal FIE (taking the view of the hardware). 
Thus, the “representative hardware fault” for the a benchmark is the set  of (at least) two 
physical faults. 
 
When selecting a faultload one has to pay attention that faults should be related to their 
consequences, if they give rise to erroneous behavior. Clearly, faults for which it remains 
unclear what their consequences have been (e.g., where and when they become active), 
usually, are not part of a ‘good’ faultload. (This is true, in particular, for internal FIE’s.)  For 
example, consider kernel hangs. The challenge is how do we observe this? If the measuring 
software runs on the machine experiencing the kernel hang, it cannot measure /observe 
anything. If the measuring software runs on another machine, it can only watch the output of 
the machine under test/benchmark (e.g., does the machine still respond to SQL-queries). If 
there is no response, it cannot know whether the kernel hanged or crashed, the application 
hanged or crashed, the network is down etc. However, considering kernel behaviour may 
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depend on the measure employed. If the benchmark measure is defined at the service level, it 
may not matter whether the kernel hanged or crashed. Furthermore, it is often not feasible to 
distinguish between exceptions that occur because of normal things happening (there are a lot 
of these) and those that occur because a fault was injected.  
 
Thus, an important aspect is, where and how the (effects of the) selected faults can be 
observed. This is entirely dependent on the selected workload and is tied closely to the 
question of what and how to measure. 
 
 
3.4 Portability 
 
 
 Another challenge faced when selecting an suitable work- and faultloads is portability. The 
question of portability of the work- and faultload arises since dependability benchmarking is 
used for  comparing different systems. Hence, an important feature of any successful and fair 
dependability benchmark is to design it to be portable across as many target systems as 
possible. This is a difficult task in the case of performance benchmarks (hence, for workloads) 
and, much more so, in the case of dependability benchmarks. 
 
For example, consider the portability of hardware faults. Some hardware faults may not have 
an effect on some types of hardware (e.g. bit flips injected into RAM will have no effect on 
ECC capable RAM). Some hardware may not be available (e.g., certain CPU-registers). Some 
hardware may cause problems, even if the application does not use it. For example, a defect 
network card may generate garbage on the PCI-bus, which in turn may disrupt disk/IO (disk 
controllers connected to PCI-bus), so even an application not using the network at all will be 
affected by a defective network card. 
 
A solution here may be to inject, as mentioned, ‘high level faults’, which may come from a 
number of ‘lower level’ causes. This is again an issue of fault repesentativeness. In this effort 
, faults are represented by higher abstractions and then implemented for each particular 
instance. 
 
Software (design) faults of hardware dependent OS parts are, clearly, not portable; other 
software faults might be portable in certain cases. Operator faults may not be portable 
between applications of different vendors (different configuration files, different user 
interfaces). A solution here may be again to inject  ‘high level faults’, which may come from a 
number of ‘lower level’ causes. Such high level faults are then representations of fault classes. 
This again is an issue of fault representation. 
 
 
3.5 Implementability 
 
 
Finally, as already mentioned, for performing benchmarking experiments it is necessary that 
the selected faultload can be implemented. That is to say, it is necessary that the faults can be 
injected at the selected location and time and with their specified occurrence rates. Hence, the 
important question is to figure out whether a limited set of techniques can be identified that 
are sufficient to generate the relevant faultload according to the dimensions considered for the 
benchmark [Arlat 2002].  
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The task of designing portable workloads and portable and implementable faultloads is 
facilitated, if there is a simple and easy to use description of  work- and faultloads. Ideally, the 
description should be such that a benchmark generator can automatically transform the 
description into a portable (instrumented) benchmark program. 
 
Summarizing, the faultload for a DBE should ideally be: 
•     representative 
•     complete 
•     acceptable 
•     implementable 
•     portable 
•     repeatable 
•     adaptable. 
 
On the other hand, it is sufficient that the fault load for a FIE is representative and 
implementable. 
Thus, dependability benchmarking is a much more complex task than fault injection. 
 
 
 4 Synchronisation of Workload and Faultload 
 
 
As soon as the appropriate work- and faultload is selected one has to decide how they are 
synchronized. Synchronisation helps in making the benchmarking process more efficient by 
avoiding to consider faults that have no effects on the SUB running the selected workload. So, 
if a new workload or a new faultload is selected  synchronisation has also to be re-defined. 
 
Synchronization is also necessary between the application under test and the background load. 
For instance, it is not useful to send SQL queries before the database server is up and running. 
Moreover, synchronization may be helpful to implement corrective operator actions/mistakes, 
as operator actions do not usually occur randomly but are triggered by certain observable 
states of the system. For example, when somebody notices, that a database server is no longer 
responding, an operator could logon to the server and try to find out what is wrong or simply 
restart the server. 
 
Notice, that  synchronization issues are dependent of the type of benchmark. For certain 
benchmark the synchronization can be loose; for other benchmarks one may implement a tight 
synchronization, depending on the needs and the details dependability benchmark 
configuration. 
 
 
Synchronisation related questions are:  
 

- How can faults be injected at "critical" locations/times to improve the "fault hit" ratio? 
(e.g. flipping memory bits by random will not make sense outside  reachable regions).  

- Do we need a synchronization language?  
- Can we use such a mechanism to improve repeatability?. 
- Can we use information available before starting experiments? (Maybe we know that 

an application does not use the disk. Then there is no need to inject disk faults.) This 
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can be important, for example if the application behaves differently in different states, 
this might be one way to "synchronize" when to inject different types of faults. 

- Can we use formal methods to gain such information?  
- Is it possible to calculate such critical locations/times based on some model or on field 

data and knowledge about the operation of the application. 
 

As mentioned, depending on the aim of the benchmarking experiment, work- and faultloads 
might be tightly or loosely synchronized. Notice that the synchronization of workload and 
faultload is not relevant for probabilistic fault injection, but when speeding up the experiment. 
On the other hand, the synchronization of workload and faultload is useful and necessary for 
focused test cases.  
 
Adaptable work- and faultloads 
 
If we have some a priory knowledge on the target system or target application area, we might 
selectively use only some parts of the work- and faultload. For example, if we know that we 
always have experienced operators we might neglect operator faults. However, operator faults 
also depend on the application. Or, if we know that the software is tested well we might 
neglect software faults. If we know that an application does not use the disk, than there is no 
need to inject disk faults. Thus, to improve the benchmarking experiments the faultload 
should be adaptable. The specific knowledge for adaptations can be the basis of a knowledge 
base for dependability benchmarking experiments as part of the Dependability Benchmarking 
Management System (BMS). The knowledge base can make the information available before 
starting experiments.  
 
Such knowledge can also be important, for example, if the application behaves differently in 
different execution states. This might be important to synchronize work and faultloads when 
to injecting different types of faults. One, probably, can use formal methods (model checking) 
to gain such information. The data base could also provide information relevant to calculate 
critical locations and injection times based on field data and knowledge about the operation of 
the application. 
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5 Examples  of Work- and Faultloads 
 
 
We now present several examples of work- and faultloads in order to show the work- and 
faultloads that can be used in different benchmarking experiments.  
 
We present these examples in the context of specific DBE’s in order to make them 
comprehensive. Therefore, we also include short descriptions of the applications, the 
experiment platforms and the fault injection methods. The discussion on the benchmarking 
goals, the benchmarking process, and the selection of suitable measures are topics addressed 
in deliverable [BDVEV1]. 
 
 
 

 
5.1 Distributed Transactional System Running Linux 
 
 
In this experiment, we consider investigating a distributed transactional system running on top 
of the Linux operating system. Networked systems, like the system considered here, are, in 
general, very large and complex. They are, therefore, prone to failures, more than most other 
classes of computing systems. Nevertheless, we heavily rely on the availability of their 
services.  
 
5.1.1 The System under Benchmarking 
 
Our system under benchmarking is (an emulation of) the Virtual Server [Zhan 2000], see 
Figure 5.1.1 and Figure 5.1.2. The Virtual Server is a scalable server built on a cluster of real 
servers. The front-end of the real servers is a load balancer which schedules requests to the 
servers. The Virtual Server employs redundancy for fault-tolerance. For instance, the load 
balancer consists of two ‘Directors’, Figure 5.1.2. 
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Figure 5.1.1 The emulated hardware configuration 
 
 
 
 

 
 
Figure 5.1.2  SUB 
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The services of  web-based transactional systems consist of three basic groups: 

• web services,  
• database services,  
• supporting services  
 

The services provided by the web servers and the services provided by the load balancing 
Directors constitute the DBT. We use the well known open source product Apache as web 
server and either the open source product MySQL or the commercial Oracle as a database 
server. The support services (e.g., DNS) are part of the background load. 
 
For our benchmarking experiments we need a realistic workload. The workload is generated 
by workload generating clients.  
 
In addition to the above dependability benchmark configuration we will also considering a 
simplified set-up without database services. 
 
  
 
5.1.2 Short Description of the Dependability Benchmarking Configuration 
 
The benchmark will be conducted using the UMLinux framework [Buchacker 2001, Sieh 
2002, Höxer 2002]. UMLinux is a framework capable of evaluating the dependability 
behaviour of networked machines running the Linux operating system in the presence of 
faults. (The Linux operating system is widely employed in networked server environments, 
for example as web- or mailserver.) 
 
The core of the framework is a Linux simulator, which runs on top of a real world Linux 
machine as a single process and simulates a single machine running Linux. A second process 
paired with each simulated machine is used for fault injection. The framework is supported by 
a graphical user interface for experiment control. The framework uses software fault injection 
to inject faults into a simulated system of Linux machines. The simulation environment is 
made available to the experimenter by porting the Linux operating system to a new 
"hardware"  the Linux operating system! Due to the binary compatibility of the simulated and 
the real system, any program that runs on the real system will also run on the simulated 
machine.  
  
 
5.1.3 Work- and Background Load 
 
The clients emulate end-users sitting in front of their workstations and making database 
requests via their web-browsers. Typical workload parameters are: transaction types, packet 
sizes, packet rates, or  source/destination of packets.  
 
The supporting services (the background load) are such as are necessary in a networked 
system (e.g. domain name service). 
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The system workload is based on the example systems described in TPC-C Version 5.0 
[TPC01] from the Transaction Processing Performance Council. The workload described in 
TPC-C  is used as the (external) workload for the web-based transactional system. 
 
For the simplified system with web services only we consider using SPECweb99 [SPEC00] 
as workload. The workload will be generated by the clients which are part of the 
dependability benchmark configuration. 
 
 
5.1.4 Faultload 
 
We are mainly interested in fault coverage and fault propagation. The faultload will consist of 
high-level hardware faults injected into the hardware of the web- and database server 
machines as well as into the interconnection network. In order to simplify experimentation, 
the load generating clients and machines providing supporting services will, in this 
experiment, be exempt from fault injection. Thus, we are mainly interested in  high-level 
hardware faults and hardware configuration faults. Later we will also consider operator and 
input faults (client faults). 
 
The considered faults include hardware faults in computing core and peripheral devices of a 
single machine as well as faults external to machines, such as faults in external networking 
hardware, see Figures 5.1.3 and 5.1.4. For example, the faultload includes bit-flips in a 
machine's random access memory or central processing unit, defect blocks on storage devices 
(hard-disk, cd-rom, floppy etc.) and network send and receive failures. 
 
Which specific consequences induced by the injected faultload are considered in each 
benchmarking experiment depends on the scope of  the  experiment. For example, if the scope 
is to view the server's behaviour  from the client's point of view, the considered consequences 
(erroneous behaviour) can be classified into the following failure modes:  

• faulty response (faulty record data)  
• delayed response  
• lost packets 
• server error response  
• server crash or hang  

 
The last item is a server crash or hang from the clients point of view, i.e. the client is unable to 
evoke a response from the server until the end of the test run.  
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Figure 5.1.3  Workload, faultload and background load 
 
 
 

 
 
Figure 5.2.4  Error propagation. In each experiment, exactly one fault is injected in a single 
machine or the network hardware at a certain time. 
 
 
The experiments will be conducted using the UMLinux framework [Buchacker 2001, Sieh 
2002]. All the machines (hardware) are virtualised. The virtual machines run the Linux 
operating system and are binary compatible to the real world machines. All faults will be 
injected into the virtual machines. 
 
Peripheral hardware access, such as hard-disk, floppy or cd-rom drive access is implemented 
using system calls of the Linux operating system. Thus the arguments of these system calls 
are checked to see if the faulty device is being accessed. If it is, the return value from a read 
or the data passed to a write is modified according to the fault model, for example to 
implement several defect blocks on a hard-disk. An inaccessible hard-disk is implemented by 
modifying the return value of the read system call to return an error. Of course the framework 
also allows to "inject" other types of faults, such as system configuration faults, site or 
environmental faults and interaction and operational faults. Since the framework is easily 
extensible, any well defined, representative fault can be injected. 
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5.2 Embedded System for Space Application 
 
 
In this experiment we focus on the area of embedded systems; more precisely, we focus on 
the area of embedded control systems. 
 
 
5.2.1 Brief Presentation of the Dependability Benchmarking Configuration 
 
The benchmarking configuration consists of the hardware (an ordinary PC), the OS (Linux) 
and an application which is a model of satellite control and navigation system. This 
application was provided by Saab-Ericsson Space, who is an advisor for the project. The 
system under benchmarking is the operating system together with the application. The main 
reason for this choice is that the platform is easy to use; also the focus at this point is not to 
get representative results per se, but to define the process by which one can perform a 
benchmark. 
 
For an end-user, the usefulness of a (computer) system is judged by the usefulness of the 
services provided. In our case, it is the services provided by an application running on top of 
an operating system. Therefore, the relevant level for measuring dependable behaviour is the 
service level. Example of indicators of such services could be the capability to handle 
interrupts within a certain time window or providing control signals to the process with a 
certain periodicity.  
 
The experiment includes a stressload, consisting of a workload, a faultload and a background 
load. The application area very much controls the choice of workload for a benchmark and of 
course it affects the type of faultload/background load chosen. These concepts will be discussed in 
the following sections. 
 
5.2.2 Workload Selection 
 
In order to get a realistic evaluation of the target system a realistic application has been 
chosen that can run on top of the OS. The application chosen is a control and navigation 
system for a satellite. It was chosen because it is a realistic example of an embedded control 
system. Note that the full system cannot be used since the environment that it is designed for 
(space) cannot fully be simulated for use in a benchmark. Therefore, a simpler environment 
simulator is used.  
 
The ODIN satellite has two different purposes, both astronomical research and atmospheric 
research. This means that the satellite must adapt to different objectives, looking out into 
space for astronomy and down at earth for atmospheric observations. The different objectives 
also give rise to different requirements on the accuracy of the attitude control system, causing 
the satellite to operate in different modes with different requirements. Also, a wide range of 
sensors and actuators are placed on the satellite [Berge 1997], differing in purpose and 
accuracy.  
 
The workload is ported to C, from the original ADA control and navigation application, using 
POSIX-compliant mechanisms for providing concurrency and control of tasks. Since the C-
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compiler is widespread to nearly all hardware and software platforms the issue of portability 
is made easier. Also, many OS’s have POSIX-support (at least partially) which makes this 
application as portable. 
 
The system consists of five main tasks of execution, implemented as POSIX pthreads 
[POSIX]. Two tasks are periodic tasks that handle the control algorithms, one is a background 
task and there is one task handling the on-board bus communication (simulated in software) 
and one task is the environment simulator, which drives the experiment and sends data to the 
control tasks via the bus interface. The system is illustrated in Figure 5.2.1. When conducting 
the experiments care must be taken so that the effects of the measurements are reduced, i.e., 
the amount of interference is reduced. 
 
 
 
 

TRIADCMDATT

UNW

OSUSIM

BACK

 
 
Figure 5.2.1: An overview of the software system used as workload in the benchmark. 
CMDATT and TRIAD are responsible for the control algorithms and execute at 16 Hz and 2 
Hz respectively. UNW simulates the onboard network used for communication. BACK is a 
background process running on low priority. 
 
The application we use is a representative of some, but not all, control applications. 
Therefore, in an external benchmark where results are made public, more applications than 
just one are needed. This approach is a similar approach as the one taken in common 
performance benchmarks  like SPEC [SPEC] and EEMBC [EEMBC]. 
 
 
5.2.3 Faultload Selection 
 
Basing a benchmark on the services provided by the workload is one way of trying to ensure 
that the results are fair. In order to make the benchmark effective it is important to find a 
faultload/background load that perturbs the parts of the OS that actually have an impact on the 
services provided. We have used a three step method for selecting a faultload/background 
load. This method only deals with external faults. As a consequence of this decision no 
internal hardware faults are part of the faultload. This is due to the fact that these faults are 
generally not dealt with at the OS level, and therefore they are not a key factor for the 
selection of OS’s. Also, operator faults are not considered since there is generally no operator 
for embedded systems. The classes of faults being considered are thus external software and 
hardware faults. By using the three step process described below, relevant perturbations to the 
system can be identified. 
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An outline of the process is as follows: 
 

1. Divide the services provided by the OS into suitable categories. An example of this 
division can be seen in Figure 5.2.2 .  

2. Characterize how the workload makes use of the services provided by the OS. This 
can be accomplished by mapping the interactions between the OS and the workload to 
the different service categories identified in step 1.  

3. Identify the relevant stresses for the components of the OS that are most heavily used 
by the workload, these are the most likely places to affect the services provided by the 
workload (which are the basis for our measurements). When a possible stress has been 
identified it is important to consider the representativeness of this stress to increase 
accuracy. 

 
Steps 1 + 2 are closely intertwined and might benefit from being considered together, to avoid 
unnecessary details in the categorization of OS services. One benefit is that a common model 
for all target systems can be achieved using this method. This makes the stresses portable at a 
high level. 
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Figure 5.2.2: An example of how the OS can be divided into different components. Note that 
this componentization can be specific for a given application. This makes it easier to identify 
the relevant components for benchmarking purposes. 
  
 
Figure 5.2.2 can be used as an example of how a faultload can be selected for a given 
application. For the control application used in this benchmark the main components used in 
the OS are Memory Management, Synchronization, Thread/Process Handling and Scheduling.  
 
For instance the synchronization can give rise to the following faultload: 
 

• High request rate to one semaphore 
• Many semaphores used simultaneously, both by peer threads and other processes 
• Releasing semaphores that are free 
• Testing deadlock situations 

 
This is just an example of how faults/stresses can be chosen. Of course the issue of 
representativeness must be considered as well. How and when each stress is applied is very 
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important. All of the stresses in this example are possible to introduce using a user 
process/thread. As a start, stresses will be applied in a stream without restarting the system 
(unless it has crashed/hanged). 
 
To increase the efficiency of the experiments some synchronization is needed between the 
workload and the faultload/background load. As a basic level of synchronization, the stresses 
must be applied when the workload is up and running at normal conditions and not before. 
Also, a stress must not be applied before the effect of the previous stress has been recorded. 
 
 
 
5.3 Embedded System for Automotive Application 
 
The application under study is a “diesel engine electronic control unit” (ECU). The figure 
5.3.1 shows the inputs and outputs of the ECU. Nowadays, all functions in a modern diesel 
engine are controlled by the ECU communicating with an elaborate set of sensors measuring 
everything from engine speed to engine coolant and oil temperatures and even engine 
position.  
 
5.3.1 The System Under Benchmarking 
 
The SUB is the ECU. Its outputs need to be amplified. For that purpose a power amplifier is 
used. The ECU is implemented as a SoC. The structure of the SoC is as shown in figure 5.3.2. 
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Figure 5.3.1. ECU inputs and outputs 
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Figure 5.3.2  Architecture of the ECU.  
 
5.3.2  The Dependability Benchmark Target 
 
The DBT is the applicative software, i.e. the Control Algorithm. In our case study  the control 
algorithm is implemented using a Real Time Operating System (RTOS) as well as without 
using an RTOS. So, we consider two SUB’s intending to compare them. 
 
In any case, the control algorithm constitutes the ECU functionality. The ECU functions can 
be described as follows. 
 
The ECU gets from the sensors:  

1. The pressure in the common rail. 
2. The engine speed. 
3. The throttle position. 
4. The intake air pressure. 
5. Crankshaft angle. 
6. Crankshaft position. 

 
Depending on these values the ECU evaluates: 

 The quantity of diesel that must be injected into the diesel engine.  
 The injection angle at which the diesel must be injected. 
 The injection duration time. 
 The new pressure in the common rail. 
 The new intake air pressure. 

 
By means of the actuators the ECU controls this parameters. 
 
As a summary the ECU functions are: 

 Get values from the sensors. 
 Evaluate the new parameters of the engine 
 Control the actuators to obtain the right conditions in the system. 
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In order to implement the ECU control algorithm, it can be considered as two independent 
processes: the pressure injection control loop (ICL) and the air management control loop 
(AMCL). 
  
 
 
The ECU control algorithms for both processes can be described by means of five tasks: 
 
• First task: In this task it is necessary to lookup data  (lookup in a table) and to perform 

data interpolation.  Its aim is to calculate the amount of fuel to inject. The input 
parameters are engine speed and throttle position. The engine speed is calculated 
synchronously while the throttle position is obtained from a sensor through an analogue 
to digital converter channel.  

• Second and third tasks: Crankshaft’s tooth management and angle to time calculation that 
run synchronously with the crankshaft of the engine. The first of them continuously 
recalculates and updates engine speed, while the second schedules fuel injection pulses 
according to this updated value and the results of the table lookup and interpolation tasks. 

• Fourth task: This task is a control loop. The pressure injection control loop (PICL) 
regulates the common-rail pressure. Its output signal actuates over a discharge valve to 
keep the pressure on the reference. 

• Fifth task: This task controls air management. This is a bit manipulation task that actuates 
on waste-gate and swirl valves to optimise the performance of the engine. 

 
These tasks run concurrently on the micro-controller (Motorola PowerPC MPC 555). Tasks 
two and three (tooth management and angle to time calculation) run synchronously with the 
rotation of the engine, and thus, the worst case for these tasks is the case in which the engine 
runs at its top speed.  
 
On the other hand, tasks one, four and five (table lookup and interpolation, PI control loop 
and bit manipulation) are executed at predefined periods to update the engine parameters. 
 
 
5.3.3  Dependability Benchmarking Configuration 
 
In order to inject faults and evaluate performance the dependability benchmarking 
configuration will consist of two PC’s and a PCB with the SoC which has the embedded 
automotive application. The printed circuit board (PCB) which holds the SoC is necessary in 
order to provide the power supply to the SoC and connect the SoC pins to the NEXUS (see 
below)  connection and with the PC ports.  
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Figure 5.3.4  Dependability Benchmarking Configuration 
 
 
In order to access the engine status register for fault injection we are going to use NEXUS 
[Nexus].  
Taking into account NEXUS capabilities we will use a NEXUS-based SWIFI technique for 
injecting faults. 
 
In the case of the synchronisation, a personal computer (PC) (with NEXUS) will take charge 
of deciding when and where the fault is going to be injected and its temporal duration 
(transient or permanent in the case of hardware faults). So in the case of hardware faults the 
PC will randomly choose the time of the injection and the fault location: CPU registers, code 
or data memory. NEXUS  has interesting characteristics such as the ability to set breakpoints 
and watch-points, read and write memory locations without stopping the execution and with a 
minimal impact over the system, or to access to the instruction trace information with 
acceptable impact to the system under development. We are going to exploit these NEXUS 
characteristics to develop a new software fault injection strategy. With the trace capabilities of 
the NEXUS standard the PC will recollect the execution trace of the application after the fault 
is injected in order to compare with a golden run. Also, the fault tolerance mechanisms of the 
micro-controller and the OS will detect some of the errors. 
 
 
5.3.4 Workload 
 
In this application we have two control points to stress: the engine speed (R.P.M.) that 
reduces the cycle to do the big part of the application and the timer that specifies the time loop 
control for the common rail pressure. With high engine speed and short time for the common 
rail pressure loop we can obtain a heavy stress load.  
 
On the other hand, to implement the tasks that constitutes the control algorithm of the 
embedded automotive application we will use a set of functions which are used for 
benchmarking purposes in automotive industry. Such functions are a subset of the EEMBC 
[EEMBC] benchmark. EEMBC is a set of algorithms that are the most used in car and 
industrial applications.  
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The functions we will use to implement the five tasks defined above for the ECU are: 
1. Table lookup & interpolation 
2. Angle to time conversion 
3. Pulse width modulation (PWM) 
4. Tooth to spark 
5. Road speed calculation 
6. Bit Manipulation. 
 

 
5.3.5 Faultload 
 
In embedded applications we mainly have to consider hardware faults and Operating System 
faults. There are no operator faults to be considered because a typical embedded industrial 
application has no interaction with an operator. 
 
In the special case of the embedded automotive application, the memory of the system and the 
I/O lines are the best place to inject faults. However, it is important to notice that in most 
cases faults injected on the I/O lines will be represented by faults in memory. Therefore, using 
SWIFI fault injection methods could be sufficient to generate the fault load. Faults will be 
injected into system memory since the state of the system is stored in system memory.  
 
The critical data needed by the engine is stored in a special register, called the engine status 
register.  
 
In the case of OS faults, the PC will take charge of deciding which system call to corrupt. 
When the system call is chosen, the PC will also decide the parameter to corrupt (in case the 
system call has more than one parameter). As in the first case, after the injection is produced 
the system can detect the error via the fault tolerance mechanisms of the micro-controller or 
the OS return error codes. Also the trace capabilities of the NEXUS standard will allow us to 
compare the execution after the fault with a golden run.  
 
As soon as NEXUS can be used to synchronize and to observe  the behaviour of the system in 
presence of faults we can use also pin level forcing techniques for injecting faults if needed. 
 
 

 
6. Conclusion 
 
 
We discussed some of the many challenges which one encounters when designing suitable 
work- and faultloads for dependability benchmarks. We also presented some examples of 
experiments in the focused area. When we have performed the experiments, more information 
on dependability benchmarking processes is, hopefully, available which helps to meet the 
challenges. 
  
Succinctly put, selection of a good workload, and more so of a good faultload is, in general, a 
non-standard pragmatic process based on knowledge, observations, and reasoning about the 
system functionalities and structure, and about the constraints induced by the operational 
environment. Dependability benchmarking is about dependability and performance; and it is 
the process of measuring and comparing. Unless the system services, its architecture, its 
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organisation and its operational environment is very well understood, no one can solve the 
(difficult) basic problems of defining dependability benchmarking processes. 
 
Nevertheless, some general guidelines for selecting work- and faultloads can be extracted 
from the above. For example: 

 
• In order to get a realistic evaluation of the system under benchmarking  a realistic 

application has to be chosen that can run on top of the SUB. 
• Widely accepted performance benchmarks can provide the basis for selecting 

application specific workloads also for dependability benchmarking. 
• Basing a benchmark on the services provided by the workload is one way of trying to 

ensure that the results are fair. In order to make the benchmark effective it is important 
to find a faultload/background load that perturbs the parts of the SUB that actually 
have an impact on the services provided.  

• Identify the relevant stresses for the components of the SUB that are most heavily 
used by the workload, these are the most likely places to affect the services provided 
by the SUB. 

• Ideally, when benchmarking a system all existing faults should be considered in the 
first place. However, what faults to incorporate in the faultload depends, for example, 
on whether an external or an internal benchmarking experiment is to be performed.  

• The selected faultload for a specific dependability benchmarking experiment should 
be widely acceptable. 

• Knowledge of representativeness of faults is necessary for selecting a ‘good’ faultload. 
• If the aim of the benchmark is to identify weakness, even faults with small rates may 

be important. If the aim is to evaluate availability, faults with high rates are important. 
• When selecting a faultload one has to pay attention that faults can be related to their 

consequences, if they give rise to erroneous behavior. 
• It is necessary that the selected faultload can be implemented. 
• Thus, we have to distinguish between the set of recommended faults that should be 

considered in a benchmarking experiment and the actual implementable faultload for 
the experiment. 

• A typical hardware faultload includes bit-flips in a machine's random access memory 
or central processing unit, defect blocks on storage devices (hard-disk, cd-rom, floppy 
etc.) and network send and receive failures. 

• Which specific faultload considered in each benchmarking experiment depends on the 
scope of  the  experiment. For example, if the scope is to view the server's behaviour  
from the client's point of view, the considered erroneous behaviour can be classified 
into the following failure modes: faulty response (faulty record data), delayed 
response, server error response, server crash or hang.  

• Other types of faults are system configuration faults, site or environmental faults and 
interaction and operational faults.  

• If we have some a-priory knowledge on the target system or target application area, 
we might selectively use only some parts of the work- and faultload. 
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