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Abstract

The determination of a representative faultload has been identified as one of the
key challenges for the DBench project. Besides it has long being recognized as a
pragmatic way to assess the behaviour of computer systems in presence of faults,
the application of fault injection in the context of dependability benchmarking is
far from being straightforward.

Indeed, fault representativeness is a very decisive factor in relation with the
necessary properties of a dependability benchmark — especially, fairness, i.e.,
forming a consistent reference for assessing alternative solutions. The fulfilment
of this property has a strong impact on the selection of the faultload, and
especially with respect to its representativeness.

In order to tackle this problem, we have first sketched a conceptual framework to
precisely identify what were the main notions that are governing the problem of
fault representativeness, especially in the context of a fault injection experiment.
Besides its usefulness to describe these relevant notions involved, this framework
proved useful for structuring the set of specific experiments that we have devised
to get better insights on the issue of fault representativeness. The deliverable then
addresses, in turn, more specific issues relevant to the determination of
representative faultloads with respect to hardware faults, software faults
(distinguishing operating systems and application layers) and operation faults
application (i.e., fault induced by operators). Finally, a brief discussion on the
insights obtained and some recommendations for the derivation of representative
faultloads conclude the deliverable.
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1 Introduction

Among the various attributes (such as workload, faultload, measurements and measures) that
have been introduced within the general framework defined by the DBench project [Madeira
et al. 2001] to precisely characterize a dependability benchmark, the determination of a
representative faultload has been identified as one of the key challenges.

Of course, among the suitable techniques available to generate such a faultload, fault injection
appears as privileged approach. In particular, fault injection can be seen as a means for testing
fault tolerance mechanisms with respects to special inputs they are meant to cope with: the
faults. In addition, fault injection also proved very much useful for characterising the
behaviour of computerised systems and components in presence of faults.

Numerous techniques for injection have been proposed [Carreira et al. 1999], ranging from
i) simulation-based techniques at various levels of representation of the target system
(physical, logical, RTL, PMS, etc.), ii) hardware techniques (e.g., pin-level injection, heavy-
ion radiation, EMI, power supply alteration, etc.), and iii) software-implemented techniques
that support the bit-flip model in memory elements. Many tools have been developed to
facilitate the conduct of experiments based on these various techniques [Hsueh et al. 1997].

Building up on the advances made by these research efforts and on the actual benefits
procured, fault injection progressively made its way within industry, where it is actually part
of the development process of many manufacturers, integrators or stakeholders of dependable
computer systems (e.g., Ansaldo Segnalamento Ferroviario, Astrium, Compaq/Tandem, ESA,
SAAB Ericsson Space, Honeywell, IBM, Intel, NASA, Siemens, Sun, Volvo, just to name
some). This confirms the pertinence and the usefulness of the approach.

Nevertheless, the application of fault injection in the context of dependability benchmarking
is far from being straightforward. Indeed, fault representativeness, i.e., the plausibility of the
supported fault model with respect to actual faults, is a concern that has often been related to
fault injection-based experiments, even when they were targeted to the evaluation of a
specific computer architecture. Such a concern, is even more acute in the case of
dependability benchmarking, due to the fact that the ultimate objective is to compare
alternative systems. Indeed, the faultload should comply with the main properties that need to
be supported by dependability benchmarks.

More generally, along the same line as the necessary properties identified in Deliverable CF2
(see [Madeira et al. 2001]) and in addition to them, several important requirements have to be
met so that dependability benchmarks can be actually recognized. These include: agreement
among the dependability community, acceptance by the end-users at-large (providers,
integrators, stakeholders, etc.), usefulness, by supporting the provision of meaningful
measures, fairness, by forming a consistent reference for assessing alternative solutions.
Agreement and acceptance are definitely the ultimate targets that need to be aimed at. Of
course, usefulness and fairness are paramount in supporting these. We have identified early in
the definition of the project, that the fulfilment of the fairness issue had a strong impact on the
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selection of the faultload attribute, and especially with respect to representativeness property.
Accordingly a specific effort has been devoted to tackle this problem.

Towards this goal, nevertheless, we advocate that the study of the impact and consequences of
an injected fault (i.e., the error propagated) offers a pragmatic and sensible means to address
the representativeness issue. We will further illustrate this argument in the sequel.

One important question is to figure out whether a focused set of fault injection techniques
(ideally, a single one) could be identified as sufficient to generate a faultload for many classes
of faults, or whether a distinct technique is needed for each class. Accordingly, one of the
outcomes of this specific study is to provide some objective insights concerning the faultload
dimension for dependability benchmarking whose detailed characterization will be carried out
in Deliverable T23. The ultimate goal is to identify the technology that is both necessary and
sufficient to generate the faultload to be included into a dependability benchmark.

This deliverable is organized as follows. Chapter 2 describes the context of representativeness
concerning fault injection techniques and motivates our specific effort to address the issue of
fault representativeness in the framework of DBench. It also identifies the various types of
faults on which we have focused our attention: hardware, software and operation1 faults. The
following sections successively address each of these fault types. While hardware faults are
dealt with in Chapter 3, software faults are considered in two separate sections by
distinguishing the operating system point of view (Chapter 4) and the application point of
view (Chapter 5). Chapter 6 covers the issues related to operation faults. Finally, Chapter 7
concludes this report by providing a synthesis of the results obtained and expressing some
general recommendations.

                                                
1 For sake of brevity, we use the term operation faults to designate those operational faults that are

committed by users operating (with) the system during their interactions with the target system.
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2 Context and Classes of Fault Addressed

This section is composed of three main parts. The first one motivates this specific effort by
precisely identifying the problem posed by the generation of a faultload to be used in the
context of dependability benchmarking in the light of the uncertainties concerning the types of
faults actually covered by the available fault injection techniques. The second part provides a
comprehensive framework that defines the main issues involved, and on which we have
structured our focused effort. Finally, the last part briefly introduces the various studies
presented in the subsequent sections.

2.1 From Real or Injected Faults to Dependability Benchmark Faultload

As is the case of performance benchmarks, it is expected that a dependability benchmark will
heavily rely on experiments and measurements carried out on a target system.

Analogously to what was introduced for fault injection-based evaluation [Arlat et al. 1990],
the experimental dimension of a dependability benchmark can be characterized by an input
domain and an output domain. The input domain corresponds to activity of the target system
(workload set) and the set of injected faults (faultload set). In particular, the workload defines
the activation profile for the injected faults. The output domain corresponds to a set of
observations (measurements set) that are collected to characterize the target system behaviour
in the presence of faults. A set of specific or comprehensive dependability measures can then
be derived from the processing of the measurements set, as well as the exploitation of the data
available concerning the workload and faultload sets.

It is definitely the determination of the faultload set — the very novel part of the input
domain with respect to performance benchmarking — that poses the most significant problem
in order to achieve a fair assessment of the dependability measures of interest. At first glance,
it would seem necessary to confidently match the techniques being considered to generate the
faultload with respect to the real faults that are targeted. Nevertheless, having to support only
a limited number of techniques would be definitely beneficial from the usability point of
view. Moreover, it is worth pointing out that what is important is not to establish an
equivalence in the fault domain, but rather in the error domain, as similar errors can be
induced by different types of faults.

The concepts and terminology used to account for threats and describe fault pathology are in
accordance with wide spread usage in the dependability community (e.g., see [Avizienis et al.
2001]). A system may fail either because it does not comply with the specification, or because
the specification did not adequately describe its function. An error is that part of the system
state that may cause a subsequent failure: a failure occurs when an error reaches the service
interface and alters the service. A fault is the adjudged or hypothesized cause of an error. A
fault is active when it produces an error; otherwise it is dormant.
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Accordingly, two main related issues and questions have to be considered:

1) Fault representativeness (of a fault injection technique): To what extent the errors induced
are similar to those provoked by real faults or by a representative fault model?

2) Fault equivalence (of fault injection techniques): To what extent distinct fault injection
techniques do lead to similar consequences (errors and failures)?

So far, the investigations carried out concerning the comparison of i) some specific fault
injection technique with respect to real faults (e.g., see [Chillarege & Bowen 1989, Daran &
Thévenod-Fosse 1996, Madeira et al. 2000]) and ii) several injection techniques (e.g., see
[Choi & Iyer 1992, Yount & Siewiorek 1996, Folkesson et al. 1998, Fuchs 1998, Stott et al.
1998]) have shown mixed results. Some were found to be quite equivalent, while others were
identified as rather complementary.

In particular, in [Daran & Thévenod-Fosse 1996], it was found that about 80% of the
mutations considered led to errors similar to real software faults. On the other hand, the study
reported in [Fuchs 1998] revealed that: i) the compile-time form of the software-implemented
fault injection technique used to inject faults in the code segment of the executed application
was found to sensitize the error detection mechanisms included into the MARS target system
in a way similar to the physical fault injection techniques considered (pin-forcing, heavy-ion
radiation, EMI), ii) faults injected into the data segment led to significantly distinct
behaviours.

Thus, the variability of these results motivated us to carry out a comprehensive set of
co-ordinated experiments to provide a good appraisal of the questions raised previously about
the faults actually covered by the various fault injection techniques available.

Initially, most studies related to the application of fault injection on a prototype of a
fault-tolerant system or a real target system relied on physical fault injection, i.e., the
introduction of faults through the hardware layer of the target system (e.g., see [Arlat 1992]).
Physical techniques actually enable real faults to be injected in a very close representation of
the target system especially without any alteration to the software being executed. Still, such
an approach is nowadays impractical for many computers systems due to the speed and
reachability constraints that characterise modern processors and integrated circuit
components. Nevertheless, in spite of the difficulties in both developing support
environments and conducting such experiments, the application of physical level techniques
can still be envisaged for embedded systems based on small-scale controller devices.
In particular, this application can be facilitated by taking advantage of the testability-support
capabilities (in particular those based on the IEEE Std 1149.1. standard for boundary scan
structures and methods) featured by most moderns ICs (e.g., see the Scan Chain-Implemented
fault injection technique supported by the GOOFI tool [Aidemark et al. 2001]). Nevertheless,
such a technique suffers from a non-negligible intrusiveness, in particular in the time domain.

A trend favouring the injection of perturbations through the software layer for simulating
physical faults (i.e., software-implemented fault injection — SWIFI for short) has emerged in
the last decade (e.g., see [Barton et al. 1990, Kanawati et al. 1995, Carreira et al. 1998, Stott
et al. 1998, Arlat et al. 2002]). Such an approach facilitates the application of fault injection
by overcoming several problems associated with physical techniques (such as controllability,



DBench Deliverable ETIE2 Context and Classes of Fault Addressed

7

repeatability, etc.). Moreover, recent studies have shown that SWIFI was also able to emulate
to some extent software faults (e.g., see [Madeira et al. 2000]). Accordingly, from a pragmatic
viewpoint, SWIFI would seem a privileged technique for generating the faultload in the
context of dependability benchmarking. Nevertheless, more experimental work and related
analyses are needed to get more evidence on the faults actually covered by SWIFI and more
generally to understand the underlying error creation and propagation mechanisms.

To cope with the temporal intrusiveness problem mentioned earlier, especially when the
technique depicted in [Rodríguez et al. 2002]), an attractive alternative is to take advantage of
the standard debugging technology that is now available for supporting embedded processors
designed to run real-time programs. The successful application of such an approach was
reported in [Krishnamurthy et al. 1998]. Among the debugging technology now available, the
Nexus2 embedded processor debug interface is an open industry standard that provides
interesting characteristics that can be useful for fault injection as well. For example, it is
possible to access memory “on-the-fly”. This special function was primarily meant for
debugging hard real-time systems (without stopping nor affecting the system under test). It
can readily be used for injecting faults using a special, non-intrusive, SWIFI technique, as it
allows reading and writing the memory while the processor is running, without any significant
overhead.

2.2 Fault Pathology, Fault Representativeness and Fault Equivalence

In this subsection, we provide a global framework where the main issues related to the
assessment of the relationship between real (reference) faults and injected faults in a target
system can be explicitly identified. The various items addressed concern: the target system
levels, fault injection level, distance from fault injection level to reference faults level as well
as  to the levels where the faulty behaviour is observed. The impact of the fault tolerance
mechanisms on the fault pathology and the necessary trade-offs between
representativeness/equivalence property and ease of application (portability, etc.) of the
technology used for faultload generation are then briefly discussed. A preliminary (shorter)
version of this discussion appears in [Arlat & Crouzet 2002].

2.2.1 Target System Levels

Several relevant (ordered) levels of a computer system can be identified (e.g., physical-device,
logic, RTL, algorithmic, kernel, middleware, application, operation). At each of these various
levels faults may occur and consequences (errors, failures) may be observed. To make things
clear, in such context, operation faults correspond to fault committed by users during their
interactions with the target system.

Concerning faults, these levels may correspond to levels where real faults are considered and
(artificial) faults can be injected. Concerning errors, the fault tolerance mechanisms
(especially, the error detection mechanisms) provide convenient built-in monitors.

                                                
2 Also known as IEEE-ISTO 5001™-1999 (See http://www.ieee-isto.org/Nexus5001).
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2.2.2 Fault Injection Level

For characterising the behaviour of a computer system in presence of faults, it is not necessary
a priori that the injected faults be “close” to the target faults (reference), it is sufficient that
they induce similar behaviours.

Indeed, similar errors can be induced by different types of faults (e.g., a bit-flip in a register or
memory cell can be provoked by an heavy-ion or as the result of an error provoked by a
software fault).

What matters is not to establish an equivalence in the fault domain, but rather in the error
domain (Figure 2.1). As shown in the figure, the RTL level — on which the SWIFI technique
focuses — is a privileged level that covers the consequence of faults originating from a wide
range of levels.

X: reference fault locations — O: Observation locations

Figure 2.1: Target system levels and fault pathology

2.2.3 Distances of Injection from Reference and Observation

What matters is that the respective error propagation paths converge before the level where
the behaviours are observed. This is depicted on Figure 2.2. Two important parameters can be
defined on these various levels:

• distance dr, that separates the level where faults are injected from the reference fault
level(s);

• distance do, that separates the level where the faults are injected from the levels their
effects are observed to be compared.
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Figure 2.2: Reference fault and observation distances

The shorter dr and the longer do, the more it is likely that the injected faults will exhibit
behaviours similar to those provoked by the targeted reference faults.

The first claim directly results from the fact that a zero distance characterises the (limiting)
case when injected faults are the same as reference faults. The rationale for the second one is
based on the fact that the right-most levels correspond to higher abstractions (interpretations)
of system states; accordingly it is more likely that the observations of erroneous behaviours
that are associated to such levels will be perceived as equivalent outcomes, in particular
failure modes (e.g., hangs, erroneous results, etc.).

2.2.4 Fault Tolerance Mechanisms

In practice, it may be the case that the presence of a specific fault tolerance mechanism (FTM)
on one target system (and not on the other one(s)) will alter the error propagation paths.

This has a significant impact on the scope of (real) faults actually covered by the injected
faults, whenever the FTM is implemented at level located between the level of the targeted
faults and the level where the faults are injected and thus intercept the error propagation paths.

Indeed, assuming a perfect (100%) coverage for the FTM, then representativeness (with
respect to the targeted faults) of the benchmark using the faultload characterized by the
injected faults would then be zero. This could be simply accounted for by introducing another
distance parameter: the distance dm separating the level where the faults are injected from the
level where the fault tolerance mechanism is acting.

Such a knowledge about a FTM and its location and the related distance dm is important to
select the appropriate level where faults are to be injected to emulate faults located at a given
reference level. To illustrate the problem, if one considers a system where memory is being
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protected by EDAC mechanisms, then the application of bit-flips via the SWIFI technique,
where faults are injected at the RTL level by software, would not allow to readily emulate the
same behaviours as those induced by real SEUs affecting the memory circuits. In this case,
this would mean that the faults would need to be injected rather at the physical level.

It is thus clear that the claim made earlier that dr should be short is also related to the impact
of FTMs: indeed, the shorter dr the less it is likely that a FTM is located between the
reference and injection levels.

Additional concerns with respect to the knowledge about the presence of FTMs can be
identified that are related to: i) selecting the most appropriate faultload (for example, when
the objective is to test a FTM, then, whenever possible, a short distance dm should be
preferred), and ii) getting some insights whether the interpretation of results of a benchmark
can be extrapolated confidently beyond the faultload that has been actually applied.

2.2.5 Necessary Trade-Offs

From a dependability benchmarking point of view, it might not always be possible or cost-
effective to have access to the actual structure of the target system to identify a priori a
faultload complying with the representativeness property.

Accordingly, an alternative could be to favour a standard fault injection technique that is not
perfect (from the representativeness point of view: e.g., errors induced cannot be confidently
linked to a specific set of real faults), but that is nevertheless useful, as it covers a large
spectrum of faults and is easy to implement3.

Such trade-offs will be investigated in WP3, where benchmark prototypes will be proposed
and evaluated.

2.3 The Faults Addressed and the Conducted Experiments

The experiments being conducted in the framework of the specific effort devoted to
representativeness and equivalence of fault injection techniques have targeted faults
concerning various of the levels previously identified for a target system: hardware, software
and operation.

Hardware faults encompass the physical device, logic and RTL levels. Hardware faults are
actually an essential dimension of our dependability benchmarking effort, especially for what
concerns embedded systems that are considered as one of the application domains for which
prototype benchmarks will be studied within DBench. Specific analyses of error propagation
were carried out by means of fault injection experiments using VHDL-based simulation.

For software we have explicitly distinguished the case of the operating system (kernel and
middleware levels) and the application level.

                                                
3 In such a case, there might exist a need to establish a dialogue with the provider of the system

being benchmarked in order to derive a fair interpretation or post processing of the benchmark
measurements.
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For what concerns operating system point of view, in this study, we have focused our effort
on Linux, mainly because its Open Source statutes significantly facilitates the supporting of
the internal controllability and observability features needed by the experiments to be
conducted. Linux has now become a “real world” operating system that is being used in a
wide range of applications including those with dependability requirements. Windows 2000
will be the other generic OS being considered by the project for developing prototype
benchmarks targeting OSs.

Concerning the application point of view, the representativeness experiments have targeted
transactional applications running on Windows 2000 and Oracle database. Indeed, this is one
of the application domains that has been selected to develop prototype benchmarks. Linux
will be also considered in future work.

Operation faults, i.e., faults committed by users during their interactions with the transactional
system, reportedly correspond to a large proportion of faults affecting real use of data base
systems. Accordingly, we have carried a specific study to address this issue.

In each case, a comprehensive work combining analysis and experimentation (involving
several fault injection techniques) has been carried out. Analysis was in particular related to
the consideration of real faults.

This analysis was meant for the derivation of fault/error models to support the conduct of
fault injection experiments, by proposing either some specific classes of faults to be readily
injected (i.e., with zero reference distance4), or some specific “watch” mechanisms to monitor
the fault consequences from the typical error patterns caused by real faults as was used in the
case of the OS experiments.

                                                
4 It is worth noting that this was especially the case for the experiments concerning operation faults

where scripts simulating the occurrence of real faults (derived from interviews and log data
analyses) were essentially used.
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3 Hardware Fault Representativeness

As was indicated in Section 2.3, hardware faults encompass the Physical Device, Logic and
RTL levels. Nowadays, hardware faults are an essential dimension of our dependability
benchmarking effort, especially for what concerns embedded systems that are considered as
one of the application domains for which prototype benchmarks will be studied within
DBench.

In order to study the fault representativeness in these levels, a bottom-up methodology based
on a detailed understanding of the root-cause of faults must be applied. Fault models are then
deduced from the physical causes and mechanisms implied in the occurrence of faults. This is
related with physics of failure methods (also called reliability physics methods), that ideally
would lead to a meaningful reliability prediction at the right abstraction level [Amerasekera &
Najm 1997].

Figure 3.1: Hardware faults propagation at different abstraction levels in a system.

In this chapter, the connections between the Physical Device, Logic and RTL levels are
established, as it is reflected in Figure 3.1. In Section 3.1, the connection between Physical
Device, and Logic and RTL levels is done using a theoretical study of the physical
mechanisms related to faults in modern ICs. From this study, a set of fault models for Logic
and RTL levels are deduced. From the theoretical study we can conclude that, in future
technologies faults in combinational logic will have a great importance.

To demonstrate the representativeness of the models deduced in Section 3.1, in Sections 3.2
and 3.3, a number of fault injection experiments using VHDL-based simulation are carried
out. The aim of these experiments is to study the incidence of faults at RTL level. VHDL
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[IEEE 1993] is a widely utilised standard for digital design, useful to make structural and
behavioural descriptions. It has some elements that aid the fault injection process.

The experiments performed in Section 3.2 are oriented to verify the effect that injecting faults
at Logic level produces at RTL level. The basic idea is to inject faults into combinational
logic and study the fault manifestation in register elements. The results obtained show that
their effects are very harmful in the registers of the system. However, as not all the registers
of a system are identical (and, what is more important, not all the registers are accessible by
software) a deeper study is carried out in Section 3.3. Here, the registers of a microprocessor
are classified depending on their accessibility in user registers and hidden registers. When
analysing the effects of injecting faults into both types of registers, we have found that the
number of failures generated by injecting in hidden registers is not negligible.

3.1 Representativeness of Hardware Faults into Logic and RTL Levels

3.1.1 Fault Mechanisms and Models: Introduction

Although the most used fault models are stuck-at (0, 1) (for permanent faults) and bit-flip (for
transient faults), as the integration density of VLSI circuits rises, it becomes more necessary
to introduce newer, more complex models.

Depending on their duration, faults are classified in:

• Permanent, which remain in existence indefinitely

• Transient, with a usually short temporal duration

• Intermittent, similar to transient as they a have a temporal duration, but that appear and
disappear repeatedly in time, without a periodical behaviour.

In next subsections we briefly describe the physical mechanisms implied in every type of
fault, showing their corresponding fault models [Gil 1999].

3.1.1.1 Permanent Faults

Permanent faults are related to irreversible physical defects in the circuit. These defects can be
produced during the manufacturing process or the normal operation (see Figure 3.2). In this
case, a number of wearout mechanisms can occur in the long term, revealed initially as
intermittent faults until they finally provoke a permanent fault.

Note that manufacturing faults can also produce subsequent faults during the circuit
operation. This relationship has been represented in the figure with a dashed line.

In Figure 3.2 we can see the models deduced for permanent faults (inside the ovals), and the
main related physical mechanisms (inside the rectangles). The figure shows some well-known
causes (labelling the arcs) that originate these faults [Siewiorek 1994, Amerasekera & Najm
1997, Pradhan 1986]. Besides manufacturing defects (lattice, mask-layout, package, etc.),
some causes tied to wearout (electrical stress, hot electronic trapping, thin-oxide breakdown,
electromigration etc.) are shown. To deduce the fault models at Physical Device level, we
have classified the mechanisms related to the causes into two groups.
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Figure 3.2: Some causes and mechanisms of permanent fault models.

In the first group we consider short/open faults in the transistor layers (metal, oxide, etc.).
Depending on their effectiveness, these faults can manifest as transistor stuck-on/stuck-off or
classic short/open. These faults in transistor layers can produce short faults between power
lines (VDD, GND) and the logic circuit I/O nodes. They can also cause short/open faults in
both the I/O transistors and the connection lines between logic circuits. The effect of these
faults at logic and RTL levels is a set of fault models sometimes related to each other:

• Stuck-at (0, 1). This is the most used fault model

• Short in the connection lines of logic circuits

• Open-line in the connection lines of logic circuits

• Bridging (a combination of short and open-line)

• Stuck-open. This fault is due to floating high impedance nodes, which hold the previous
logic value for the retention time, until the discharge of the output parasitic capacitances by
leakage currents.

• Indetermination. In this case, the fault is due to either a short in the logic circuit outputs
or an open in the inputs.

In the second group we include some faults which affect the switching delay of MOS
transistors and the charge/discharge delay of parasitic capacitances in I/O connections:
modification of parasitic capacitances at transistor level, carrier mobility, and transistor
dimensions. Their effect at logic and RTL levels is a permanent modification of the logic
circuit delays, so their fault model is delay.
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3.1.1.2 Intermittent Faults

These faults are due to some of the mechanisms seen for permanent faults, particularly those
caused by wearout. For that reason, the fault models applicable to intermittent faults are the
same as for permanent faults.

3.1.1.3 Transient Faults

These faults, also called soft errors and single event upsets (SEUs) can appear during the
operation of a circuit, due to different causes, either internal or external. In contrast to
permanent faults, transient faults do not introduce a physical defect in the circuit. The
treatment of these faults is difficult, which serves to emphasise their importance, because they
cannot be located spatially and their duration is short. Moreover, they do not have a well-
defined model, due to the variety of local and external phenomena that can originate them.

Figure 3.3: Some causes and mechanisms of transient fault models.

As Figure 3.3 shows, bit-flip (in storage), pulse (in combinational logic) and
indetermination models allow to represent transient physical faults of different types:
transient in power supply, crosstalk, electromagnetic interferences (light, radio, etc.),
temperature variation, α and cosmic radiation (the last mechanism is very important in space
and avionics applications). These physical faults can vary directly the values of voltage and
current of the logical levels of circuit nodes, as for instance in power supply noise. They also
can generate e−-h+ pairs, which are swept by the electric field of the depletion zones of PN
unions in transistors. This produces a current of e−-h+ pairs, which may alter the charge in
storage (SRAM, DRAM, and registers) cells [Amerasekera & Najm 1997] and flip their value
(bit-flip). Electron-hole current can also change the logical levels in combinational circuit
nodes, and therefore cause their indetermination or commutation, with the apparition of
pulses (we can consider this faults as bit-flips, but in combinational logic). We have called
pulse the model for this type of fault (produced in combinational logic) to differentiate from
the bit-flip (produced in memory circuits). A pulse can in his turn affect signal timing (set-up,
hold) of data to be written in memory circuits, generating storage cell bit-flips.
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The delay model allows to represent physical faults due to transients in power supply (VDD),
which can alter the switching delay (τ ∝ l2/(µn(VDD/2))) of MOS transistors, or the
charge/discharge delay of parasitic capacitances in input/output connections.

Remark also a mechanism due to modern manufacturing features. The main factor is the
interconnection shrinking when running at high frequencies. Under these circumstances, both
skin and Miller effects are reinforced, provoking alterations in the RC time constant that can
violate time margins (mainly tset-up and thold) leading to data corruption.

One of the most important concerns about transient faults is their duration, but very little has
been written about this matter.

3.1.2 New Trends in Deep Submicron Technologies

Dependability of VLSI circuits is becoming more and more important as these devices are
increasingly used in reliable and even safety-critical systems. Semiconductor technology
advances have tremendously increased the performance of computing systems over the past
decades. Although, shrinking geometries, lower power voltages and higher frequencies have a
negative impact on dependability by increasing the rates of occurrence of transient,
intermittent and permanent faults.

Next, we want to study the impact of the new technologies on physical fault mechanisms.
Also, we will try to relate these mechanisms with fault models at Logic and RTL abstraction
levels. Taken as the reference the mechanisms and models indicated in the previous section,
our objective has been to point out the main issues and differences.

3.1.2.1 Permanent Faults

We will concentrate the study on some groups of fault mechanisms of high significance for
new technologies: oxide damage, metallization and package and assembly. In every group, we
will emphasise on some particular fault mechanisms. For every particular mechanism, we will
explain the problem, describe its effect, and indicate the corresponding fault model(s) at
Logic or RTL level.

3.1.2.1.1 Oxide Damage

Among the various fault mechanisms related to oxide damage, we will focus on oxide
breakdown, hot carrier injection and plasma damage.

Oxide Breakdown

Damage to the gate oxide is one of the major concerns in MOS processes. As a consequence,
maintaining Gate Oxide Integrity (GOI) is extremely important to process control. GOI is one
of the trade-offs defining the gate oxide thickness in a new process, since thinner gate oxides
are usually more sensitive to wearout and damage for a given supply voltage. Hence, GOI
requirements have an important role in defining the maximum supply voltage at which
circuits designed in a given technology can be operated.
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Oxide thickness is shrinking as device geometry’s scale down:

• In 1978, tox ≈ 750 Å

• In 1988, tox ≈ 250 Å

• In 1998, tox ≈ 80 Å

• In 2002, tox ≈ 25-30 Å, which is not far from the physical limit of SiO2 due to direct
tunnelling phenomena.

The mechanisms related to gate oxide breakdown are complex and the issues involved are
numerous [Hu & Lu 1999, Stathis 2001]. Basically, breakdown is a two-step process:

• Wearout: Defects or traps generated inside oxides and at interface due to current through
oxides. The current is due to Fowler-Nordeim or direct tunnelling effects.

• Breakdown: Defects become high, leading to local high current densities followed by local
thermal runaway.

Some approaches for modelling fault mechanisms are based on Percolation Theory of wearout
and breakdown. Also, new models for Ultrathins have been introduced, as for example “V-
model”, where an electron must travel full thickness of oxide before slamming into opposite
interface [Hawkins 2000].

The oxide wearout mechanism or Time-Dependent Dielectric Breakdown (TDDB) occurs at
weaknesses in the oxide film due to defects, and it is towards the reduction of these defects
that most effort in GOI is directed. Defects are usually due to the presence of impurities in the
thermally grown oxide, or the location of broken SiO2 bonds. Improvements in GOI have
been shown through optimisation of the gate oxidation pre-clean, and the passivation process
above the gate conductor [Strong et al. 1993].

Effects of Failure Mechanisms

Damage to the gate oxide can result in excessive leakage at the input and output pins,
increased standby power dissipation in the IC and a decrease in circuit speeds. The current
can cause damage both at the interface and in the bulk, thus generating more defects.
Eventually the number of defects will be large enough so that the high current in the oxide
can cause thermal heating and catastrophic damage. Effects of oxide breakdown are
particularly of concern in memory cells where gate leakage could result in loss of stored data.
In Electrically Erasable Programmable Read Only Memories (EEPROM) which rely on
conduction through the gate oxide for operation, the oxides are subjected to high electric
fields. These devices are more susceptible to weaker gate oxides.

Models at Logic Level

Besides short/open-line (see Figure 3.2) related to “strong” damage in transistors at
breakdown step, it is necessary to introduce also some models for wearout step.

The increase of leakage current in the transistor gate can also increase the output current of
the logic gates, as it is shown in Figure 3.4. This will affect the output voltages, leading
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eventually to indeterminate logic voltages. So, we can represent this fault using the
indetermination model at the output of the gates.

Figure 3.4: Indetermination fault caused by the increase of leakage current at the transistor
gate. (a) Perturbation of ‘0’ value. (b) Perturbation of ‘1’ value.

The increase of leakage current can also affect the switching speed of the gates. Figure 3.5
shows rise-time and fall-time model for a CMOS inverter. The gate either charges or
discharges a capacitive load CL. In rise-time case, it can be assumed [Pucknell & Eshraghian
1994] that the PMOS transistor stays in saturation for the entire charging period of the load
capacitor CL. So, PMOS transistor is modelled as a current source. NMOS transistor is
turned-off. Similar reasoning can be applied to the discharge of CL through the NMOS
transistor. This is in saturation and PMOS transistor is turned-off.

Figure 3.5: Effect of leakage current in timing characteristics. (a) Rise-time. (b) Fall-time.

In both cases, the increase of Ileakage due to thin-oxide defects can modify the net charge
current of CL, decreasing its value, since:

leakagesaturationeargch III −=
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Therefore, the time of charge/discharge is delayed. Rise and fall time increases. This can be
represented by means of delay model, changing (increasing) the gate delay.

Another timing effect related with Ileakage is data retention failure in memories (particularly
significant in EEPROM memories) [Lee et al. 2001]. The value of stored data can be
modified in time and the data can be lost. This change can be modelled by indetermination
or bit-flip of the cell content.

Hot Carrier Injection

This mechanism is extremely important in submicron CMOS devices where hot carrier
concerns are one of the items that define transistor design [Rodder et al. 1995]. The
degradation in the transistor performance is usually attributed to the presence of fixed oxide
charge due to electron and hole trapping in the oxide. Charge trapping is generated by the
lateral electric field in the MOS transistor channel. The carriers in the channel, electrons in
NMOS and holes in PMOS, will have energy distributions with tails close to their respective
barrier heights at the Si-SiO2 interface. Electrons have higher mobility and channel kinetic
energy, and so are more likely than holes to create charge that damage oxides (n-channel is
more vulnerable).

Effects of Failure Mechanisms

Gradual degradation of some transistor parameters (VT, gm, IDS characteristics) occurs
[Hawkins 2000]. The type of degradation depends on the type of transistor:

• In NMOS transistors:

o Decrease in drain current (IDS)

o Decrease in transconductance (gm)

o Increase in threshold voltage (VT)

• In PMOS transistors:

o Effective “shortening” of channel

o Increase/decrease in IDS

o Increase/decrease in gm

o Increase/decrease in VT

In a NMOS transistor, for instance, electron-trapping in thin-oxide decreases the channel
conductivity and increases VT. From the expressions that relate IDS and gm with VT:

( )2
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It is clear that electron-trapping causes IDS and gm decreasing: as VT increases, (VGS–VT)
decreases, reducing IDS and gm.

The effect of hole trapping in NMOS transistor is the opposite, that is, VT decreases. The
reason is that the positive charges increase the conductivity of n-channel.

The models at transistor level are the stuck-off and stuck-on faults, which represents a
pseudo-open or pseudo-short between drain and source, with different degrees of
effectiveness according to the channel conductivity [Favalli et al. 1991].

Models at Logic Level

Pseudo-open and pseudo-short can cause the indetermination in output voltages, as the
resistance of the output transistors has an intermediate value: Rlinear < Rpmos, Rnmos < Roff.

Timing characteristics can be also disturbed by the change in VT. From Figure 3.5, and
supposing Ileakage ≈ 0 (the load gate is fault-free) and IIL ≈ 0 (this is a realistic assumption in
CMOS gates), we can estimate rise-time and fall-time:

• Rise-time estimation

The saturation current for PMOS-transistor is given by

)2
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This current charges CL and, since its magnitude is approximately constant, we have
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This result compares reasonably well with a more detailed analysis in which the charging
of CL is divided, more correctly, into two parts: (1) saturation and (2) linear region of the
transistor [Pucknell & Eshraghian 1994].
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• Fall-time estimation

Making similar assumptions and reasoning for NMOS transistor, we may write for fall-
time:
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Expressions for rise and fall time indicate that VT changes can cause remarkable modification
(notice the non-linear dependency) in switching delays. For instance, if VT increases,
switching delays also go up.

The logic model for this mechanism is obviously, delay, that is, the modification of the gate
delay at logic abstraction level.

Another indication of switching speed may be obtained from the parameter ω0 (frequency
response):
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where Cg is the gate/channel capacitance.

This shows that switching speed depends on VT and on carrier mobility and inversely as the
square of channel length. A fast circuit requires that gm be as high as possible. Changes in gm

or VT affect to ω0.

Plasma Damage

This is a mechanism that is becoming more important with new process equipment [Shin et
al. 1993]. Plasma processes such as etching, deposition, cleaning and ion implantation can all
cause damage to the thin oxides in MOS devices. Advanced technologies increasingly use
“dry” plasma processing rather than the “wet” chemical processing used in older technologies.
The incident plasma builds up charge on metal or polysilicon electrodes usually in the region
where the area or periphery is large. This charge is then transferred to the region of the
electrode where a high electric field enables some current flow to take place, such as across a
thin gate oxide [McVittie 1996].

Effects of Failure Mechanism

The most commonly observed effect is that of increased oxide leakage current after plasma
damage takes place. This is due to a reduction in the oxide breakdown voltage. In MOS
devices, degradation of the ID-VGS characteristics are also observed [Rangan et al. 1999,
Pagaduan et al. 2001] usually in the form of an increase in the threshold voltage VT [Lin et
al. 1996].
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Models at Logic Level

The models can be the same as those of wearout step in gate oxide breakdown, related to the
increase of the leakage current. About degradation of the ID-VGS characteristics and VT, it is
possible to use the same models than those introduced for hot carrier injection.

3.1.2.1.2 Metallization

From this type of fault mechanisms, we can remark electromigration, stress voiding and
others (including several mechanisms with similar behaviour and effect).

Electromigration

As technologies advance in sub-micron features sizes and on-chip transistor density increases,
the requirements for electromigration immunity are being pushed to the limit. The
combination of smaller metal line-widths and higher current density requirements have
brought the problem to the forefront of reliability physics. This agrees with the expression for
the Mean Time to Failure (MTTF) related to electromigration (EM) [Hawkins 2000]:

e kT
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A
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where A is the metal cross-section area, J is the current density, Ea is the activation energy, k
is the Boltzman’s constant, and T is the Absolute temperature.

Present and future technologies will use 3-8 metal layers. This could give 50-500 million vias
and contacts for ICs with 20-100 million transistors. Modern vias are small (< 0.5µm, aspect
ratio 2-4, so A is reducing) and fragile, they often have enough metal to allow conduction, but
subsequent electromigration is a failure mechanism.

The inclusion of small percentages of copper (< 4% and usually about 1%) in aluminium have
enabled higher current densities (J) to be achieved before electromigration occurs. This is
attributed to the adsorption of copper at the aluminium grains boundaries thereby occupying
positions necessary for the movement of aluminium metal atoms [Ghate 1981].

Nowadays, semiconductor industry is replacing aluminium with copper in interconnects on a
wide scale [Tammaro 2000, Ogawa et al. 2001]. Copper is used for high performance ICs to
reduce intermetal capacitance and increase connectivity (its resistivity is 30 to 40 percent
lower than aluminium). This trend will have a positive impact on permanent failure, as copper
provides a higher electromigration threshold, comparing to aluminium (higher activation
energy Ea).

Effects of Failure Mechanism

Electrically the failures can cause an increase of the interconnect resistance leading to an
eventual open circuit. Electromigration can also induce electrical shorts between two levels
of metal or adjacent metal levels. In addition, bond lifts have also been observed as a result of
void formation at the bond lands.
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Models at Logic Level

Open/Short in metal connections at transistor level. This can cause many types of faults at
logic level [Gil 1999]: stuck-at, short, open-line (eventually stuck-open), bridging,
indetermination and delay (see Figure 3.2).

Stress Voiding

During the wafer manufacturing process, the deposition of the different layers and the
associated shrinkage can result in large mechanical stress in the individual layers [Jones
1987]. The thin film metal lines are particularly sensitive to such stress. The transfer of atoms
from areas of high stress to equalise the stresses along the line can result in the deformation of
the metal. In submicron semiconductor processing, the large tensile stress has been associated
with the thermal mismatch between the metal and the passivation films [Tezaki et al. 1990].

Effects of Failure Mechanism

Void formation and notching are the physical manifestations of this mechanism [Oates 1993].
Whisker growth has also been observed as result of compressive stress [Turner & Parsons
1982]. Metal movement takes place until the stress has been reduced. Failure is caused by
either increased resistance and open-circuits in the case of void formation, and short circuits
due to whisker growth.

Models at Logic Level

Since the faults at Physical Device level can be either open or short in metal connections, the
models at Logic level will be the same as for electromigration, because the physical
mechanisms are similar.

Others

Also the effect of other mechanisms such as contact migration, via migration and microcracks
and failures related with step coverage at wafer topography can be summarised in short/open
of metal interconnections [Amerasekera & Najm 1997]. So, the models at Logic level are the
same than in electromigration and stress voiding.

3.1.2.1.3 Package and Assembly

Large chip sizes also mean large and complex package design and this is also a major
reliability concern. The complexity of the package can make this one of the main product
yield limiters in large microprocessor production.

Figure 3.6: Cross-sectional view through a molded plastic package.
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A cross-section through a molded package is shown in Figure 3.6 [Amerasakera & Najm
1997]. Four major failure mechanisms can be identified:

1) Die attachment failures associated with mounting of the die to the lead frame.

2) Bonding failures associated with the thin gold wires that make the bond between the chip
and the lead frame.

3) Delamination between the plastic packaging and the die.

4) Moisture-related failure mechanisms such as corrosion, delamination and the popcorn
effect.

In next subsections, we analyse the main effects of the failure mechanisms and finally we
propose some fault models at logic level.

Die Attach Failures

Failure modes are burnout, parametric shifts or corrosion related. Additionally, cracks in the
die during excessive mechanical or thermal stress conditions will be catastrophic. Many die
attach failures are observed during thermal cycling and High Accelerated Stress Testing
(HAST).

Bonding Failures

The most common failure observed is that of open circuits due to bond lifts. The formation of
intermetallics can result in high resistances in the bond wire connection [Shirley & Blish
1987]. Wire sweeping due to excessive lagging can result in short circuits between adjacent
bond wires. Whisker growth will also result in shorting between adjacent bond wires. High
tension in the wires due to backwash, or bonding pressure issues can also lead to fractures in
the bond wire and consequently open circuits. Thinning of the bond wire especially when
using aluminium can result in localised heating in regions of high resistance along the wire.
The thinning is due to oxidation of the aluminium wire, which reduces the effective cross-
section. The high current densities lead to an electrical overstress type of thermal melting and
eventually to open circuits [King et al. 1989].

Delamination and the Popcorn Effect

These are moisture-related mechanisms. Absorbed IC moisture can expand during subsequent
temperature cycling and cause various failures. Among them, delamination between the die
and the lead frame, and between the lead-frame and the encapsulant (cracking the die) are
typical. The second effect is known as popcorn effect, because of the sound of the die
cracking.

Wire bond degradation, package cracking, pattern shift or displacement of the metallization,
and corrosion can lead to electrical failures due to increased leakage, intermittent or open
circuits.
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Corrosion

Failure is usually due to an increase in the metallization resistance and eventual open circuit.
It is also possible to have an increase in the leakage current between adjacent tracks of
metallization due to migration or dendrite growth.

Models at Logic Level

The four effects shown above can be modelled mainly with shorts and opens in wire
interconnection lines between logic circuits. The faults can be permanent or even intermittent
related with unstable connections.

3.1.2.2 Intermittent Faults

About this type of faults, the following considerations can be made:

• Intermittent faults generated by process variations and manufacturing residuals are going to
represent another major source of errors in deep submicron circuits.

• They have higher rates than transient faults.

• As geometries shrink, some permanent faults will initially manifest as intermittent. For
instance:

o Opens in the narrower sections of the wires due to electromigration.

o Shorts between adjacent or crossing conductors in the areas where the
dielectric layer is thinner.

o Leakage due to direct tunnelling of the current through oxide layers.

• Higher working frequencies increase the impact of timing uncertainties, that provoke
violations of timing safety margins (tset-up, thold) [Constantinescu 2001].

Fault models must be similar to those of permanent faults. In fact, wearout mechanisms
reveal initially as intermittent faults until they finally provoke a permanent fault. So, we can
use the models described for permanent faults, considering that they appear and disappear
with random periods.

3.1.2.3 Transient Faults

Traditionally, radiation (particularly α particles and cosmic rays) has been pointed out as the
main cause of transient faults. However, other mechanisms due to high working frequency
and new shrinking techniques used in deep submicron technologies, are revealing as other
important sources of transient faults.

3.1.2.3.1 Radiation of αα Particles

Radioactive impurities (like thorium, uranium, etc.) are present in the materials used in ICs
packages. Such radioactive elements can emit α particles with high energy (up to 8 MeV).
When the radiation collides the semiconductor, e−-h+ pairs are generated. If the number of
electrons moving is high enough to exceed the critical charge (Qcrit) of the affected transistor,
then its behaviour can be altered. This fault mechanism affects especially to DRAM cells and
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dynamic registers. For instance, a DRAM cell storing a ‘1’ will change its value to ‘0’, but if
the stored value is a ‘0’, nothing happens [Amerasekera & Najm 1997]. This effect can be
modelled with a “selective” bit-flip.

In [Juhnke & Klar 1995], the soft error rate (SER) due to α particles is calculated, considering
future technologies. Their results pointed that for a given technology (specified by its critical
charge) as supply voltage decreases the SER increases greatly. In the case of the 0.6 µm
technology, reducing the power supply to half the normal implied multiplying the SER by a
factor of 8. If both scaling parameters (feature size and power supply reduction) are
considered together, it can be expected a higher sensitivity to α particles in newer CMOS
technologies, raising their influence in future semiconductor generations.

Transient faults due to α particles are considered almost instantaneous (several picoseconds
[Amerasekera & Najm 1997]), but its effect persists until data are rewritten (or refreshed). In
[Srinivasan et al. 1994], the current wave generated by an α particle is modelled as:
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where Qtotal is the total charge collected, and τr and τf are respectively the pulse rise time and
fall time constants (dependent on the technology). From this equation, using an electronic
simulator, it is possible to generate a library (table) of pulse durations for different
technologies (fixing τr and τf), by simulating the equation varying the value of Qtotal.

3.1.2.3.2 Radiation of Cosmic Rays

When cosmic rays enter atmosphere, they collide with atmospheric atoms, producing cosmic
particles: photons, electrons, protons, neutrons, pions, etc. Among these cosmic particles,
high-energy neutrons (> 1 MeV) have been considered the main source of transient faults in
CMOS devices. When a neutron impacts silicon, the charge of transistors can be seriously
affected, in such a way that its value can flip (if the charge generated it is higher than the
critical charge Qcrit). For this reason, the most frequently used fault model is bit-flip. Other
effects can be also possible. For instance, if the charge generated is near Qcrit, the value of the
transistor can become indeterminate (indetermination fault model) [Gil 1999].

The SER due to cosmic rays has been usually calculated neglecting the effect of low energy
neutrons (< 1 MeV). In newer technologies, however, this is not possible, as the critical
charge of transistors decreases almost quadratically with gate length (LG) [Hazucha &
Svennson 2000]. For this reason, lower energy neutrons (with a greater flux [Ziegler 1998])
are also able to provoke faults, increasing the neutron-induced SER.

Up to date, faults generated in combinational circuitry were neglected, considering only faults
in storage (memory and registers). This was justified because the natural mechanisms of
circuits were able to mask most of the faults induced in combinational circuitry [Liden et al.
1994]. These natural mechanisms are [Shivakumar et al. 2002, Constantinescu 2002]:
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• Logical masking. This phenomenon occurs when a fault is produced in a portion of the
circuit whose output does not affect the system output (because it is not active, or because
the output depends on other portions of the circuit).

• Electrical masking. It consists on the attenuation of an erroneous pulse after trespassing a
number of subsequent gates to the point that the pulse does not affect the output.

• Latching-window masking. This mechanism is related to the latching of a fault, becoming
an error. Figure 3.7 shows how this mechanism works. The latching-window is the time
between tset-up and thold. If an erroneous pulse starts before tset-up and ends after thold, it will
be latched, provoking thus an error. If it ends before tset-up or starts after thold, the fault will
be masked. Other possibilities can lead to store an indeterminate value in the latch.

Figure 3.7: Latching window masking

However, in modern devices these masking phenomena seem to reduce (and even to
disappear) for several reasons [Shivakumar et al. 2002, Constantinescu 2002]:

• The reduction in the number of gates between latches (due to deeper pipelining in
processors) affects to logical and electrical masking.

• In newer technologies, impacts produce stronger pulses that cannot be electrically masked
so easily.

• As working frequencies raise, the latching-window (thold–tset-up) decreases, allowing that the
probability that a combinational fault is latched (becomes an error) is higher.

In combinational logic, the effect of cosmic rays cannot be modelled as a bit-flip, because
once the fault disappears, the output value returns to its correct value. That is, it behaves like
a pulse. For this reason, the fault model for this type of transient fault has been called pulse,
to distinguish from the classical bit-flip (produced in storage). It is important to remark that
the incidence of pulses in combinational logic will increase in new technologies.
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The duration of transient faults caused by cosmic particles is a matter not very deeply
considered. In [Freeman 1996], the current wave generated in an impact is modelled as:
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where Q is the charge collected due to the particle impact, and T is the charge time constant
of the transistor for the technology under study (dependent of the technology). As mentioned
for α particles, it is possible to generate a library of pulse durations for different technologies
(fixing Τ), by simulating the equation varying the value of Q.

3.1.2.3.3 Other Causes

Besides radiation, other causes of faults are appearing, due to new interconnection features.
For instance, the skin and Miller effects can originate timing violations (tset-up, thold), thus
altering in the delay of transistors (this corresponds to a delay fault model). These timing
margin violations may corrupt data transferred.

The skin effect [Walker 2000] is the propagation of electrons along the surface of the wires.
This effect makes the resistance of the interconnect to vary with frequency (the more
frequency, the more resistance).

The Miller effect occurs when two adjacent wires switch simultaneously in opposite
directions. When this happens, the effective capacitance between terminals is modified
[Sylvester & Keutzer 1999].

3.1.2.4 Related works

Recent works predict that new technological advances will improve the quality of
semiconductors, using better materials and processes. This increment in quality will reflect in
a lower permanent fault rate [Constantinescu 2002]. However, other aspects also positive
such as scaling the power supply and the feature size will make these devices very sensitive to
transient and intermittent faults, and their rates will raise greatly in the future [Constantinescu
2001, Shivakumar et al. 2002].

In [Shivakumar et al. 2002], the evolution of the SER of the different types of circuits in a
microcomputer (memory, latches and combinational logic) is quantified for different
technologies. The results are very significant: although SER will raise in all types of circuits,
combinational logic is impacted by the reduction in masking, leading to a strong increase in
its SER, so that by 2011 the values will reach those of memories.

For those reasons, it is necessary to develop and apply some techniques to mitigate the impact
of faults. These techniques include optimising the design and manufacturing processes (SOI,
triple-well, etc.), providing error detection and recovery mechanisms (parity, ECC, assertion
checking, redundancy, etc.), and other architectural solutions (simultaneous multithreading,
double-execution, etc.) [Constantinescu 2002, Shivakumar et al. 2002].



Fault Representativeness Project IST-2000-25425

30

3.1.3 Summary and Conclusions

In this section, the connection between Physical Device and Logic level has been done using a
theoretical study of the physical mechanisms related to faults in modern ICs. After an
introduction about fault models for permanent, transient and intermittent faults, new trends in
deep submicron technologies are analysed.

Semiconductor technology advances have tremendously increased the performance of
computing systems over the past decades. Although, shrinking geometries, lower power
voltages and higher frequencies have a negative impact on dependability by increasing the
rates of occurrence of permanent, intermittent and transient faults (mainly the last ones).
Another negative consequence is the increase in the likelihood of multiple faults. We have
concentrated the study in some fault mechanisms of high significance for new technologies:

• For permanent faults: Oxide breakdown, hot carrier injection, plasma damage,
electromigration, stress voiding and package and assembly defects.

• For transient faults: Radiation of α particles and cosmic rays, and their effect on
combinational circuits.

• For intermittent faults: process variations and manufacturing residuals.

From the study of fault mechanisms we have deduced a set of fault models at Logic level. It is
interesting to emphasise that some faults cannot be represented only by means of stuck-at (in
permanent faults) and bit-flip (in transient faults), being necessary the inclusion of new
models: delay, indetermination, pulse and open-line. From the theoretical study, we have also
deduced that in future technologies, faults in combinational logic will have a great
importance. In addition, it is predicted that transient and intermittent faults will have an
increasing importance respect to permanent faults in submicron devices.

3.2 Propagation of Faults in Combinational Logic into RTL Abstraction
Level

The basic idea is to inject faults at Logic level and study the fault manifestation in register
elements. To carry out these experiments, we have used a fault injection tool called VFIT
(VHDL-based Fault Injection Tool) [Baraza et al. 2002] developed by the GSTF (Fault-
Tolerant Systems Group) around a commercial VHDL simulator [Model Technology 2001],
to run on an IBM-PC (or compatible) platform.

Some questions must be answered:

• What kind of faults can be identified at RTL level?

• What is the percentage of occurrence of each class of fault?

• What percentage of faults at Logic level propagates to RTL level?

• How many registers are perturbed by each fault injected?

We have simulated the VHDL model of the PIC16X [Microchip 2000], a simple 16-bit
microcontroller. As the model was completely behavioural, we have modified the ALU in
order to have a structural description. This structural description includes combinational
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logic. Faults will be injected in this part of the model to study the propagation until the
microcontroller registers. On the other hand, the registers were classified (depending on their
accessibility by software) in:

• User registers (accessible)

• Hidden registers (not accessible).

We have applied the fault models deduced in Section 3.1. The injected faults have been:

• Transient: delay, indetermination and pulse.

• Permanent: delay, indetermination, high impedance and stuck-at.

Faults have been injected randomly in all ALU signals. The detailed conditions of the fault
injection experiments are:

• Injection tool: VFIT

• Injection technique: Simulator commands

• System: PIC16X microcontroller

• Number of faults: 3000 per experiment

• Workloads:

o Arithmetic series of n integer numbers (n = 10)

o Bubblesort (n = 10)

• Fault type:

o Transient: delay, indetermination and pulse

o Permanent: delay, indetermination, high impedance and stuck-at

• Fault duration: It is generated randomly in the ranges [0.1T-1.0T], [1.0T-10T] and [10T-
20T], where T is the clock cycle duration (in our system, T = 100 ns). It has been intended
to inject short transient faults, with duration equal to a fraction of the clock cycle (the most
common, as described in [Cha et al. 1993]), as well as longer faults, which will ensure in
excess the propagation of faults.

• Fault instant: It is generated randomly in the range [0-tworkload], where tworkload is the
workload simulation duration without faults. For arithmetic series, tworkload = 5.2 µs, and for
bubblesort tworkload = 80 µs.

• Fault targets: Any atomic combinational signal of the ALU and the general clock line of
the microcontroller.

• Observation targets: As explained above, the propagation of the injected faults will be
observed in the registers of the microcontroller.

We have defined the following figures to be calculated:

• Npropagated = Number of propagated faults. A fault is considered propagated if at least one
register is corrupted.
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• Ncorrupted = Number of corrupted registers. A register is considered corrupted if it has at
least a faulty bit.

• Percentage of propagated faults = 100×
injected

propagated

N

N
, where Ninjected is the number of

injected faults = 3000 per experiment.

• Multiplicity = Average number of corrupted registers per single injected fault = 
injected

corrupted

N

N

Multiplicity gives an indication of how many registers have been corrupted by a singled
fault injected. In fact, we can easily calculate the average number of corrupted registers per
propagated fault, from the expression:

100
___

×=
faultspropagatedofPercentage

tyMultiplici
N

N

propagated

corrupted

3.2.1 First results

The first simulation results obtained with arithmetic series workload can be summarised in
short:

• Percentage of propagated faults and multiplicity increases with fault duration in transient
faults.

• Most of faults manifested as bit-flip. It is possible to consider other models (especially in
transient faults), such as delay and indetermination, although they have less
representativity (i.e. their proportion in relation to bit-flips is much lower).

A deeper simulation analysis has included the study of some additional aspects:

• Influence of the workload.

• Propagation of faults into user registers.

• Clock frequency influence.

3.2.2 Influence of the Workload

Two workloads have been applied in the experiments:

• The calculus of the arithmetic series of n integer numbers.

• Bubblesort for n integer numbers.

These belong to two types of workloads (arithmetic calculus and sorting) usually used in
VHDL simulation-based fault injection campaigns. In fact, we have used the same algorithms
in other injection campaigns carried out when using VFIT [Baraza et al. 2002].

The following aspects have been observed:

• Both the percentage of propagated faults and multiplicity differ remarkably. It seems that
most complex workloads increase these factors because they produce a higher sensitisation
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of faults. Figure 3.8 shows this fact for permanent and transient faults, representing the
percentage of propagated faults.

Figure 3.8: Influence of workload in the percentage of propagated faults, for different fault
durations.

• The most common types of faults are still bit-flip and (with less influence)
indetermination. There have been observed some changes in percentages. Figure 3.9
reflects this situation for permanent and short transient faults.

Figure 3.9: Influence of the workload in the distribution of fault types manifested in registers.
a) Permanent faults. Arithmetic series. b) Permanent faults. Bubblesort. c) Transient faults

(duration [0.1T, 1.0T]). Arithmetic series. d) Transient faults (duration [0.1T, 1.0T]).
Bubblesort.
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3.2.3 Propagation of Faults into User Registers

We have also studied the propagation of faults into user registers, that is, registers that are
reachable via software. The objective of this injection campaign was to verify if the general
tendencies shown in first results were accomplished for these registers. We also wanted to
compare the incidence in user registers with the incidence in the global case considering all
the registers of the system.

We have observed:

• Small differences in the percentage of propagated faults between user registers case and all
registers case.

• Multiplicity in user registers case is notably lower than in the all registers case, as can be
seen in Figure 3.10. The high value that presents the delay fault is due to the special signals
(in our system) affected by this fault. In fact, this signal is the global system clock, and the
delay fault changes its period. So, we realise that it is a very critical signal, because it
synchronises the operation of the registers.

These two previous facts lead to the conclusion that almost all injected faults affect at least
one user register, but there are many other non-user (hidden) registers affected at the same
time.

Figure 3.10: Incidence of the different fault types injected in User registers and All registers.
Transient faults injected with fault duration [0.1T-1.0T]. Bubblesort.

Respect to the type of faults propagated in user registers, the most common faults are bit-flips
followed by indetermination. For permanent faults, the percentages are nearly the same as in
all registers case. For transient faults, we have observed higher bit-flip percentages than in all
registers case.
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3.2.4 Influence of the Clock Frequency

We have modified the clock frequency of the system. The main results are:

• The increase of the frequency provokes a raise of the percentages of propagated faults for
transient faults, as expected. In fact, higher frequencies will raise the probability of storing
transient erroneous data generated at logic level. Figure 3.11 shows this situation.

• No dependency on frequency for permanent faults.

• Small changes in multiplicity.

• Types and percentages of faults in registers have little differences. Bit-flip continues to be
the most common type of fault.

Figure 3.11: Influence of the clock frequency in the percentage of propagated faults.

3.2.5 Summary and Conclusions

The experiments performed in this section have been oriented to verify the effect that
injecting faults at Logic level produces at RTL level. The basic idea was to inject faults into
combinational logic and study the fault manifestation in register elements.

To carry out these experiments, we have used a fault injection tool called VFIT (VHDL-based
Fault Injection Tool) developed by the GSTF (Fault-Tolerant Systems Group) around a
commercial VHDL simulator to run on an IBM-PC (or compatible) platform. We have
simulated the VHDL model of a typical microcontroller. Faults deduced in Section 3.1 have
been injected at combinational logic to study the propagation until the microcontroller
registers.
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The results obtained show that their effects are very harmful in the registers of the system.
More in detail, we have found some facts that should be considered when injecting faults at
RTL level:

• Most of faults manifested as bit-flip. It is possible to consider other models (especially in
transient faults), such as delay and indetermination, although they manifested in a lower
proportion.

• A single fault at Logic level can perturb several registers at a time. This fact, called
multiplicity in this document, depends greatly on the type of injected fault and on the
workload. We have found values from a few registers to some tens in critical cases.

• Workload has a notable influence on the results. So, it would be important to use
workloads related with real applications running on each target system, or a complete set
of artificial/synthetic workloads to sensitise as much faults and target elements as possible.

• Many hidden registers (not accessible by software) are affected. Not only user registers
must be taken into account.

• When injecting transient faults, the working frequency of the target system has also a great
influence on the percentage of propagated faults. We have found almost a linear
dependency between them.

3.3 Impact of Faults at RTL Level in System Behaviour

In previous section, we have studied fault propagation in the microprocessor registers. We
have seen that most of them are manifested as bit-flip. It is possible to consider other models
(especially in transient faults), such as delay and indetermination, although they have lesser
representativity.

The objective now is to inject faults in registers to verify the impact of these faults on system
behaviour. We have counted the number of failures5 when executing the system workload.
The figures that we have considered are:

• Nfailures = Absolute number of failures occurred in the execution of the workload

• Ninjectable = Number of bits in registers that can be injected into, that is, the number of
atomic fault targets

• NRfailures = 
injectable

failures

N

N
= Relative number of failures occurred in the execution of the workload

This last figure represents the number of failures per injectable bit of registers. It is a relative
expression for the number of failures, taking into account the size of the potential fault
targets. This global size has been calculated adding the sizes (in bits) of the selected registers
to be injected.

We have also distinguished between user registers (registers reachable via software) and
hidden (or non-user) registers. We are interested in checking the relative impact of faults

                                                
5 A failure happens when the result of the workload is erroneous.
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produced in registers that cannot be reachable by software. This question is important because
these faults could not be reproduced applying some widely used fault injection techniques,
such as SWIFI (Software Implemented Fault Injection).

The experiment conditions have been:

• Injection tool: VFIT

• Injection technique: Simulator commands

• System: PIC16X microcontroller

• Number of faults: 3000 per experiment

• Workload:

o Arithmetic series of n integer numbers (n = 10)

o Bubblesort (n = 10)

• Fault type: Single bit-flip in registers, as it is the most representative fault model
according to the previous analysis (see Section 3.2)

• Fault duration: Generated randomly in the range [0.1T-1.0T]. It has been intended to
inject short transient faults, with duration equal to a fraction of the clock cycle

• Fault instant: Generated randomly in the range [0-tworkload]

• Fault targets: All the registers of PIC16X microprocessor. Two classes of registers are
considered:

o User registers, reachable via software

o Hidden registers, not reachable by software

3.3.1 Results

Table 3.1 shows the number of failures generated after injecting 3000 faults in system
registers. The number of failures has been expressed in absolute and relative format. Two
workloads are considered. The registers are classified as user registers and hidden registers.

Table 3.1: Number of failures. 3000 transient faults injected in registers. Fault model: bit-flip.

Workload Register
type

Size of fault
targets

(in bits)

Absolute
number of

failures

Relative number of failures

(Number of failures/Size of
fault targets)

User 91 186 2.04Arithmetic series

Hidden 343 197 0.57

User 251 30 0.12Bubblesort

Hidden 343 115 0.34

Figure 3.12 summarises previous results in a graphical way.
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Figure 3.12: Relative number of failures in function of workload and register type. 3000
transient faults injected in registers. Fault model: bit-flip.

3.3.2 Conclusions

Some conclusions can be extracted from the analysis of the results:

• The lower (Fault duration/Tworkload) rate can cause, respect to the differences between the
two workloads, the lower failure percentages observed in bubblesort. This yields a lower
incidence of the faults. In fact, Tworkload(Bubblesort) is much higher than
Tworkload(Arithmetic series), while the fault duration is the same.

• In relation to the differences between the two classes of registers, it has been observed for
arithmetic series workload that the impact of faults injected in user registers is higher than
the impact of faults injected in hidden registers. In the case of bubblesort, which is a more
complex workload, the higher impact corresponds to hidden registers. The cause of this
last result can be related to the critical role of some hidden registers that are sensitised by
the workload. For instance, the status register (which contains the ALU flags), the
instruction register, the constant generator registers and some registers that store
intermediate data of ALU calculations.

• In both cases, the absolute number of failures generated by injection in hidden registers can
be considered as not negligible. To make a deep and realistic validation based on fault
injection, we should be capable to inject into hidden registers (besides user registers, of
course), as shown in previous example. In any case, it is obvious that the relative impact of
hidden registers will depend on the workload and the specific system architecture.

3.4 Summary, Conclusions and Recommendations

Hardware faults encompass the Physical Device, Logic and RTL levels. In this section, the
connections between the three abstraction levels have been established.

In Section 3.1, the connection between Physical Device and Logic level has been done using a
theoretical study of the physical mechanisms related to faults in modern ICs. From this
analysis, it is interesting to emphasise that some faults cannot be represented only by means
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of stuck-at (in permanent faults) and bit-flip (in transient faults), being necessary the inclusion
of new models: delay, indetermination, pulse and open-line. From the theoretical study, we
have deduced also that in future technologies, transient faults in combinational logic will have
a great importance.

The experiments described in Section 3.2 have been oriented to verify the effect that injecting
faults (using VHDL-based fault injection) at Logic level produces at RTL level. The basic
idea was to inject faults into combinational logic and study the fault manifestation in register
elements. The results obtained have shown that their effects are very harmful in the registers
of the system. More in detail, we have found some facts that should be considered when
injecting faults at RTL level:

• Most of faults manifested as bit-flip. It is possible to consider other models (especially in
transient faults), such as delay and indetermination, although they manifested in a lower
proportion.

• A single fault at Logic level can perturb several registers at a time. This fact, called
multiplicity in this document, depends greatly on the type of injected fault and on the
workload. We have found values from a few registers to some tens in critical cases.

• Workload has a notable influence on the results. So, it would be important to use
workloads related with real applications running on each target system, or a complete set
of artificial/synthetic workloads to sensitise as much faults and target elements as possible.

• Many hidden registers (not accessible by software) are affected. Not only user registers
must be taken into account.

• When injecting transient faults, the working frequency of the target system has also a great
influence on the percentage of propagated faults. We have found almost a linear
dependency between them.

As not all the registers of a system are identical (and, what is more important, not all the
registers are accessible by software) a deeper study has been carried out in Section 3.3. Here,
the registers of a microcontroller have been classified depending on their accessibility in user
and hidden registers. Then, faults have been injected into the two types of registers, and their
effects into the workload result have been analysed. When analysing the effects of injecting
faults into both types of registers, we have found that the number of failures generated by
injecting in hidden registers is not negligible. So, to make a deep and realistic validation
based on fault injection, it should be possible to inject also into hidden registers. For this
reason, we think that SWIFI techniques should be complemented with another injection
technique to access such registers.
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4 Software Fault Representativeness from OS Point of View

4.1 Introduction

This chapter proposes an approach to analyse the effects of real and injected faults. The three
proposed fault injection techniques applied at operating system level are: i) provision of
invalid values to the parameters of the kernel calls, ii) corruption by bit-flip of the kernel
calls, and iii) corruption by bit-flip of the input parameters of the internal functions of the
kernel.

The objectives of this analysis are as follows: i) study the possible equivalence between the
fault injection techniques at API level, ii) compare the effects of API injected faults with
internal injected faults, and iii) analyse the representativeness of the injected faults with
respect to real faults, based on the nature of the produced errors.

The effects are analysed with respect to the kernel failure modes and by means of assertions
placed in the kernel. The selection of these assertions is based on the analysis of error
propagation of real faults observed on Linux device drivers and of the software source code.

The chapter is structured as follows. Section 4.2 presents the strategy we propose to carry out
the analysis of the effects (errors) provoked by both real and injected faults. Section 4.3
describes the experimental framework. Some of the results obtained are then presented and
discussed in Section 4.4. Finally, Section 4.5 summarises the chapter and draws some
conclusions.

4.2 Proposed Strategy to Analyse the Effects of OS Software Faults

Many fault representativeness studies targeted the physical faults and they all agreed on the
fact that the bit-flip is a representative fault model of physical faults (e.g., see [Cheynet et al.
2000]). However, besides a few studies [Christmansson & Chillarege 1996, Madeira et al.
2000], less attention has been paid to software faults, which are considered as the first causes
of actual system outages [Lee & Iyer 1995].

The Orthogonal Defect Classification (ODC) reports a representative fault model of software
faults [Chillarege et al. 1992]. It classifies the software faults that occurred during the
development phase of OSs developed by IBM. Also, practice shows that despite the
permanent nature of software faults, the errors they produce are very similar to those
provoked by transient faults, since their activation is very dependent on the state of the
system.

In this section, after the identification of the interfaces of an OS, we present successively the
real and injected software faults that we are considering. The obtained results and the
experimental observations to derive them are then described in detail.
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4.2.1 Structure of an OS and of its Interfaces

As it orchestrates the execution of the different application processes, the kernel is the most
critical part of an OS. The kernel gathers the functional components that provide various
services to user applications or to manage the hardware. These services are provided through
various interfaces. The Application Programming Interface (API) is the most important. This
API supports all the system libraries.

The kernel uses device drivers to communicate with the surrounding physical environment.
They can be considered as part of the kernel since they run in the same context (the kernel
context). These components are also critical. The kernel provides the services necessary to
implement them. However, for performance reasons some error detection mechanisms are
omitted. Thus, a poorly written driver could corrupt the kernel internal state.

Finally, the hardware provides elementary services to the OS to execute. This interface is used
for example at the system start-up to initialize the exception and interruption handlers.

Even a well-tested kernel contains some residual faults. However, their number is
insignificant compared to faults contained in device drivers ¡Error!Marcador no definido..
Also, as stated in [Murphy & Levidow 2000] OS failures are generally caused by errors
propagating from device drivers.

In our study, we focus on software faults, which can be either internal or external to the
kernel. We will consider the faults located at API level as external faults and those located in
the internal functions and the drivers as internal faults.

4.2.2 Real Software Faults in Linux

The study of the real faults that are observed in the OS kernel source code permits us a better
understanding of the erroneous behaviours that are provoked in reality. One way to collect
such information is the analysis of the change logs provided with each new kernel version.
They include comments about the various fixes and additions applied to the previous version.
However, it is not always easy to associate a comment with its corresponding fix.

A meta-compiler developed at the Stanford University [Engler et al. 2000] permits the
detection of real faults in OS kernels. It is based on system-specific checkers defined after a
static analysis of the source code. The goal of a checker is to verify programming rules inside
the kernel. The faults revealed by these checkers are published on the web. Table 1 presents
some of the checkers used to reveal faults within the Linux kernel source code and gives the
number of the real faults found in version 2.4.0 (the version we used in our experiments).

The developers of these checkers assume that the triggering of the first three checkers in
Table 4.1 corresponds to real faults. The types of real faults that we will consider are those
revealed by the BLOCK and the NULL checkers. The outcomes that are likely to be induced by
these faults are respectively “Kernel hang” and “Exception”. The latter is usually followed by
a “kernel panic” mode. As presented in Table 4.1, they correspond respectively to 42% and
25% of the faults revealed by the considered checkers. The analysis of their eventual
provoked errors allows us to develop some assertions explained more in detail in Section
4.2.4.3.2.
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Table 4.1 Linux kernel checkers and the number of their respective revealed faults

Checker Description Nb %

BLOCK Check if blocking functions can be called when interruptions are disabled or when spinlocks
are held.

206 42

NULL Check potentially NULL pointers returned from routines. 122 25

VAR Check the allocated large stack variables (> 1K) because of the limited size of the kernel
stack to 8K.

30

RANGE Check the bounds of loops and array indices derived from user data. 47

LOCK Check if the locks are released and if they are not double acquired. This checker is
generally useful for multi-processor systems.

26

INTR Check if disabled interrupts are restored. 27 33

FREE Check that freed memory is not reused. 17

PARAM Check if user pointers are dereferenced. 10

SIZE Check if the Allocated memory is enough to hold the type for which you are allocating. 3

4.2.3 Models for Injected Software Faults

We present hereafter the considered model for the software system from which we derive the
injected fault models. We distinguish between external and internal faults.

4.2.3.1 Functional decomposition and software system model

Four main entry points can be identified, through which Linux kernel functions are executed.
Indeed, a switch to kernel mode can be triggered by: i) an interrupt issued to the CPU by a
hardware device to indicate that it requires attention, ii) an exception signalled by a CPU
because of an error, iii) a kernel call (or system call) issued by an application or iv) the
execution of a kernel thread. The activation of kernel internal functions depends on these
entry points, but also on the current state of the kernel. In this work, we concentrate on the
third entry point: kernel calls issued via the API, which is the suitable interface to develop
portable and easy to use dependability benchmarks.

Based on the work presented in [Bowman et al. 1999], and to facilitate the analysis of the
Linux kernel, we decomposed it into five functional components: scheduling, memory
management, synchronisation, file system(s) management and communication. This
functional decomposition of Linux, which is a monolithic operating system, is only used to
facilitate the analysis. Each functional component is composed of elementary functions.

It is worthwhile to distinguish the elementary functions that are reachable from the API
(kernel calls) from those that are not (internal functions). Based on the work presented in
[Devera 2001], by modifying the gcc compiler, we were able to generate at kernel compilation
a call graph for each kernel call. A call graph identifies the elementary functions called by the
considered kernel call. For each kernel call, we define depth levels. As an example, Figure 4.1
describes the call graph for the kernel call sched_setscheduler that has three depth levels. The
“system_call” node is present in all call graphs associated with any kernel call. It represents
the kernel call entry point.
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Figure 4.1: Call graph for sched_setscheduler kernel call

In this work, three fault models are considered. The goal is to analyse the degree of
similarities of the erroneous behaviours reported for the kernel as a consequence of fault
injection at the first level (API) and in lower levels. A fault model is defined with respect to
the fault type and to the fault location. The fault types used are bit-flips and invalid
parameters. We consider two locations, either the parameters of the targeted kernel call (i.e.,
external faults) or the parameters of the underlying kernel functions (i.e., internal faults).

Another important fault parameter is the trigger condition of the fault. The trigger condition is
the event that leads to the injection of the fault. The considered trigger condition is the
interception of the targeted system call. The fault is thus injected depending on the selected
level (external or internal).

In the rest of this section, we address successively external and internal faults.

4.2.3.2 External faults

External faults mimic faults from the application level and they test the robustness of the
kernel.

Bit-flip is a generic fault model. It primarily simulates hardware faults. The goal of the
proposed comparison is to determine to what extent it can simulate the invalid argument
injection technique, which is a more focused fault model for software faults.

We compare error sets caused by bit-flips (as for MAFALDA [Rodríguez et al. 1999]) into
system call parameters with those caused by invalid parameters (as for Ballista [Koopman &
DeVale 1999]). The parameter values are corrupted by i) issuing exhaustive bit-flips (32 per
parameter) or, ii) replacing them with invalid values. Based on the work related to Ballista,
and especially its online demonstration site, eight classes of invalid parameters are defined.

Table 4.2 summarises the set of invalid values for each data-type class used in the Linux API.
These values are either invalid or close to the limit of the domain of validity. Indeed, the goal
is to stress the system as much as possible.
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Table 4.2 Data type classes

Permission flag -1 0 ULONG_MAX
(all bits = 1)

Integer INT_MIN 0 INT_MAX

Unsigned Integer INT_MIN 0 ULONG_MAX

Process identifier -1 0 INT_MAX

File descriptor Empty file Deleted Closed Read pointer
after EOF

Read pointer
before begin

Read pointer Empty -1 NULL Non NULL Freed Random

Write pointer Small (1 Byte) Far (p + 4 MB) NULL Low
(0x00000010)

Negative Random

Time pointer Negative NULL Random INT_MAX

4.2.3.3 Internal faults

Internal faults emulate various classes of faults such as those classified in the Orthogonal
Defect Classification [Chillarege et al. 1992] (e.g., assignment, checking, interface, etc). We
consider only the interface class. The set of experiments targets the kernel internal functions
that are not reachable via the API.

4.2.4 Expected Results and Observation Levels

We present hereafter the expected results of this work and the proposed observations (i.e.,
experiment outcomes and internal assertions) necessary to obtain these results.

4.2.4.1 Expected results

The main objectives of the conducted experiments are to:

• Study the possible equivalence between the fault injection techniques at the API level,

• Compare the effects of API injected faults with internal injected faults,

• Analyse the representativeness of the injected faults with respect to real faults, based on
the nature of the produced errors.

The comparison between two fault models is achieved through the comparison of their
respective effects. The highest abstraction level consists in the quantification of the observed
failure modes. From the point of view of the user of a dependability benchmark, if the
observed failure modes, after the injection of two different fault models, are different we can
state that these fault models are not equivalent. However, if the failure modes are similar, a
refinement of the observations might be needed to be able to provide more affirmative
conclusions. The first refinement we are considering consists in taking into account the error
detection mechanisms built-in within the kernel to enhance the observability capabilities. The
second refinement to further enhance the observability consists in implementing extra internal
assertions within the kernel. These assertions are described in Section 4.1.4.3.3.
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4.2.4.2 Experiment Outcomes

We distinguish two main types of outcomes as the result of a fault injection experiment:
reported and non-reported failures. For the sake of conciseness, both types will be considered
as failures modes. The considered outcomes are detailed hereafter.

Reported failures

• A hardware exception is raised. If the exception is raised in user mode, the kernel sends a
signal to the process that caused the exception. However, if it is raised when running in
kernel mode, either the running process is killed or the kernel enters the “panic” mode.

• An error code is returned. As the accuracy of the error reports is not the main objective of
our study, we do not discriminate the cases when an incorrect error code is returned (also
termed as “hindering” in [Koopman et al. 1997]).

Non-reported failures

• The kernel hangs. A kernel hang can be caused either by an infinite loop within the kernel
or when it is waiting for an event that never occurs while interrupts are disabled.

• An application hangs. This can be due to an infinite loop that the application executes.
Another possibility is when the application is waiting on a kernel wait queue for an event
that will never occur. In the latter case, the application does either accept signals, in which
case we can force it to quit, or it does not accept signals, in which case we need to reboot
the kernel.

When none of the previous events is observed, then a “no signaling” outcome is assumed.

4.2.4.3 Internal assertions

This section presents the additional observation mechanisms that permit a finer tracing of the
errors provoked by the injected faults. After the presentation of the considered error
propagation model, we present the various assertions that are inserted within the kernel.

4.2.4.3.1 Error propagation model and assertions: general idea

An execution trace consists of a sequence of internal states. They provide fine grain
observations for monitoring the internal errors.

The internal state of a program is defined by the set of variables of the program and their
respective values and also by the value stored in the instruction pointer register. We consider
that the internal state is erroneous if it contains at least an incorrect data value. An error is
characterised by the couple (correct value, incorrect value) associated to a variable or to the
instruction pointer. In addition, we distinguish between errors in the data flow and errors in
the control flow.

The mechanisms that influence whether an error propagates are i) the creation, ii) the
cancellation and iii) the hiding of the error. An error can be either an initial error (i.e., created
as the result of the activation of a fault), or propagated by another error. The cancellation of
an error is characterised by the flushing or overwriting of erroneous data. Finally, if a data
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error remains unchanged and its value is not used, then we say that the error is hidden; it
remains as a latent error. The cancellation and hiding mechanisms contribute to the “no
signaling” outcome.

We define a kernel control flow as the sequence of instructions carried out by the kernel
following a kernel call, an interruption or an exception. The code of Linux is reentrant, i.e.,
several control flows are carried out in parallel.

It is easy to analyse the state of a simple program, e.g., by comparing its state with a reference
state [Daran & Thévenod-Fosse 1996]. However, it is impossible to realise such a task for a
software executive kernel. The occurrence of random asynchronous events, such as hardware
interruptions, and the fact that Linux code is partially reentrant, make it impossible to fully
master its state. Due to the non-determinism attached to the behaviour of the target system
and the wide range of the considered faults, looking for an exact matching of experiments
would be irrelevant. Peripheral cards and the scheduling of kernel threads are the major
causes of non-determinism. To minimise the system non-determinism, we execute the
experiments just after the system ends booting. Also, we try to disable some drivers and
kernel threads for each campaign, though this is not always possible in practice as this could
divert the system from its nominal configuration. Practically, a specifically designed tracing
tool inserts breakpoints into the kernel to monitor various events (system call trap, interrupt
handling, context switch, etc.). This allowed us to reveal various causes of system non-
determinism.

The approach we have used is to carry out comparisons with respect to the expected
behaviour of the kernel and also by reducing the granularity of the considered state, i.e., by
taking into consideration only the relevant part of the global state. The level of granularity
that we consider is the kernel internal functions (Figure 1). The internal kernel-state is
defined, at internal function entry or exit points, called checkpoints, by a data structure that
contain the values associated to some critical variables. A checkpoint can belong to several
kernel control flows. The combination of these values determines to some extent the
consistency of the kernel-state. Examples of checkpoints are:

• activation of a fault, which corresponds in our context to the execution of the faulty
instruction,

• raising of an exception,

• kernel-call entry and exit.

Additionally, checkpoints are implemented by means of assertions located at the level of
internal functions. We have developed two types of assertions detailed in the following two
subsections. The first type is based on the analysis of propagation paths of some real faults
presented in Section 4.2.2. The second type consists in implementing extra observation and
error detection mechanisms within the kernel. Such mechanisms could be easily implemented
by kernel developers, but they are seldom included, essentially for performance reasons.
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4.2.4.3.2 Assertions based on real faults

The Linux real faults database presented in Section 4.2.2 has shown that BLOCK and NULL fault
classes are the most frequent in the Linux kernel. They are most of the time located in the
Linux device drivers. For Linux developers, while some errors can cause the kernel to enter
an endless loop and thus leading it to hang, most errors manifest either as null pointer
dereferences or by the use of other incorrect pointer values (the usual outcome of such errors
is an “oops” message). As a consequence, we put emphasis on BLOCK and NULL classes of
faults.

We have analysed the propagation of the effects induced by these faults. We identified the
errors that are likely to be provoked by these faults at kernel level. Then we implemented
assertions that monitor such errors.

BLOCK faults correspond to calling blocking functions when interrupts are disabled or in the
case of multiprocessor systems, when spinlocks are held. We identified all the internal
functions present in the Stanford real fault database (see Section 4.2.2) that are considered as
blocking functions. We implemented assertions at 8 of these functions entry points to check
whether interrupts are disabled.

To implement the assertions associated with the NULL class of faults, we identify three basic
functions (__kmem_cache_alloc, __alloc_pages, __vmalloc) that are used to allocate
memory. The assertions consist in the test of the returned values.

4.2.4.3.3 Other specific assertions

The development of this type of assertions is based on the analysis of internal functions. They
are inserted at the entry and exit points of internal functions, part of the call graph of a given
kernel call.

As an example, the internal function find_task_by_pid that is present in the call graph of
the sched_setscheduler kernel call, takes a process identifier as an input parameter and
returns a pointer to the structure that characterises the process. A simple assertion is to verify
that the process identifier associated to the returned structure is correct, i.e., equal to the input
parameter.

In addition to these extra detection mechanisms, we implement assertions that monitor global
kernel variables indicating the global kernel-state. They give us an internal view of the whole
impact of the injected faults. We select indicators for each functional component. The
memory pressure for example reveals the capacity of the kernel to serve user applications in
term of memory allocation. Thus, in the main function of Linux dealing with memory
allocation, we placed an assertion that gives us the value of such variable in order to post-
analyse the evolution of memory pressure during an experience.

4.3 Experimental Framework

In this section, we present the main features of the experimental framework set up to conduct
the experiments.
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4.3.1 General Description

We associate a fault injection technique to each fault model. The three considered injection
techniques are thus: i) provision of API invalid parameters, ii) bit-flip in API parameters, and
iii) bit-flip in internal function parameters.

We recall that the goal is to inject various faults and to observe and compare their
consequences. To ensure comparable results, we have developed a versatile tool supporting
the application of the three injection techniques. Each technique requires four main steps:

• The kernel calls issued by the workload that the tool is tracing are intercepted. The tool
uses Linux ptrace() interface and intercepts kernel calls in user mode as in [Akkerman
2001]. The kernel call that is targeted by the fault injection experiment is thus interrupted.

• A fault is injected according to the associated model (i.e., technique). The injection process
ensures the synchronisation between the fault and the workload and thus allows for result
comparison for the three techniques.

• The execution of the interrupted kernel call is resumed.

• The system behaviour is observed.

Figure 4.2: Framework general description

Figure 4.2 illustrates the experimental framework, based on two separate machines: target and
host. The target kernel (version 2.4.0 of the Linux kernel) is installed on the target machine
along with the injection tool. The hardware platform of the target machine is based on a
Pentium III processor. Specific modules provide the capabilities that are specific to each kind
of injection technique. The fault injection capabilities are detailed in Section 4.3.2.2. The aim
of the host machine (that is connected to the target machine through an Ethernet link) is to
monitor the target machine and to reboot it with the adequate options in case of a hang.

The location and the time of an injected fault depend on the executed workload. For each of
the functional components presented in Section 4.2.3.1, we have developed an independent
workload that activates the associated kernel calls.

We define a fault injection campaign per kernel call. During a campaign, we apply the three
fault injection techniques to the kernel call.
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4.3.2 Architecture

In addition to the modular workloads, two principal software modules characterise the
proposed experimental framework i) the fault injection module, ii) the observation and
experiment controller module.

4.3.2.1 Modular Workloads

The current framework applies to all kernel functional components. In this work, we focus the
analysis on the scheduling and the memory components, since they provide the basic OS
services.

The scheduling component performs three tasks: i) creation and destruction of processes,
ii) scheduling of processes and iii) management of timers and interrupts. The developed
workload activates the elementary functions associated with this component in a simple way.
We have selected six kernel calls to be activated by this workload: i) sched_setscheduler,
setpriority and wait4 for the process scheduling task and ii) setitimer, nanosleep and
gettimeofday for the timer management task. Other system calls associated with the
scheduling component are used by the workload but are not relevant to our study since they
have no parameters, such as the fork kernel call.

The workload is composed of three processes: a main one that creates two children. The main
process changes its priority (setpriority) and creates two other processes before yielding
the processor and waiting for the end of the other processes (wait4). One of the newly
created processes sleeps for 5 ms (nanosleep), while the other one changes its scheduling
policy to FIFO (sched_setscheduler). The sleeping process wakes up and issues various
calls (setitimer) to update its timers. In fact, the kernel provides each process with three
interval timers, each decrementing in a distinct time domain. When one of these timers
expires, a signal is sent to the process, and it can restart. All the processes issue, along the
execution of the workload, the gettimeofday call.

The memory component ensures the separation of process memory spaces and implements the
virtual memory mechanism. It is also responsible for mapping files into memory. The selected
workload is extracted from an existing performance benchmark [Finkel et al. 1992]. It solves
a mathematical model of a jigsaw puzzle. It builds a puzzle, scrambles tiles and record the
time required to solve the jumbled puzzle. This benchmark is useful to study memory
allocation and paging behaviour.

It activates the following system calls i) mmap and munmap for mapping and unmapping files
into memory, ii) mprotect to control allowable accesses to a region of memory and iii) brk to
change the memory data segment size.

4.3.2.2 Fault injection

Depending on the considered fault model, the injector module controls the injection of the
adequate fault.

As presented in Section 4.2.3.2, we consider two external fault models. A kernel call
parameter is corrupted by a bit-flip or is substituted by an invalid parameter.
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The injection of faults into internal function parameters is subtler. We distinguish the fault
insertion phase from the fault-enabling phase. The fault insertion phase instruments the kernel
code and is semi-automated. Code instrumentation is achieved in two steps:

• Since all internal functions of the kernel are not relevant to our study, the first step consists
in choosing the target functions according to the call graph generated for each kernel call.
These functions are delimited by inserting comments at the beginning and at the end.

• The second step consists in inserting, before compilation, blocks of code, called saboteur,
at the input point of an elementary function, as illustrated by the black dots in Figure 4.1.

We have developed an injection controller module, called sabotage controller in Figure 4.2,
to enable faults within the kernel. Although several saboteurs can be inserted, only one is
activated per experiment. Each insertion is associated with a flag. The set of flags introduced
permits the sabotage controller to control the injections. The injector in Figure 4.2 enables
the activation of a fault by issuing an ioctl() to the sabotage controller.

Other possibilities for injection can be supported in the future including the insertion of
invalid values (similar to the API level injections).

It is worth noting that such an injection technique is intrusive and can only be applied if the
source code is available. But this is not at all a problem in the type of controlled experiments
we are conducting here. This kind of injection provides very accurate corruptions
[Christmansson et al. 1998].

4.3.2.3 Error and Failure Observation

Figure 4.3 presents the observation framework. The observations are collected on the target
and the host machines. The execution trace that contains the assertions and the detection
modes are stored on the target machine. Whereas, the failure modes such as the kernel or the
application hang are stored on the host machine. These two sets form the results.

Figure 4.3: The observation framework

A module is inserted into the target kernel to retrieve the execution trace. The breakpoints
along with their associated assertions are inserted within the kernel before compilation. The
execution trace is saved on a file and analysed afterward.

We recall that the reported failures include returned error codes and exceptions. We have
identified from the source code 20 error codes for the scheduling and the memory
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components. These outcomes are deduced from the analysis of the application and the kernel
execution traces.

The host machine notifies on the non-reported failures, i.e., the kernel and application hangs.
The target machine signals to the host machine the beginning and the end of an experiment.
After an experiment start, the host machine waits two minutes. If the target machine doesn’t
signal an experiment end within this interval, the host tries to establish a connection with the
target. If it succeeds, we assume an application hang, and the host reboots the target
automatically. Else, we assume a kernel hang, in which case the target needs to be rebooted
manually. When the observed behaviour does not match any of the previous outcomes, a “no
signaling” is reported.

4.4 Results

The conducted experiments targeted the scheduling and the memory components. We carried
out 4470 experiments. Bit-flips in internal function parameters target 340 internal functions.
These internal functions belong to the call graphs of six scheduling kernel calls and four
memory kernel calls, target of the external injections. Table 4.3 summarises the experiment
distribution per functional component.

The number of experiments when injecting invalid values is less than when injecting bit-flips.
In fact, between 3 and 6 invalid values are associated to each kernel call parameter for the
former injection technique. However, 32 bit-flips are issued to each kernel call parameter for
the latter injection technique. That’s why the injection of invalid parameters is eight times
faster in retreiving all the results. However, it required more time for preparation.

Table 4.3 Experiment distribution per functional component

Invalid
argument

Bit-flip in API
parameters

Bit-flip in internal function
parameters

Scheduling 507 1890 552

Memory 101 1019 401

Total 608 2909 953

We present hereafter a top-down analysis of the obtained results. We first analyse the failure
modes. Then, we refine these results by analysing the error codes returned. The next
refinement concerns the enhanced monitoring allowed by the implemented specific assertions
presented in Section 4.2.4.3.3. Finally, we show how such analyses concerning fault
equivalence can be complemented by a fault representativeness study using the assertions
based on real faults and presented in Section 4.2.4.3.2.

4.4.1 Analysis of the Failure Modes

In the following subsections we propose three kinds of analysis. The first analysis will permit
to compare the provoked errors of the external fault models. Then we intend to compare the
errors provoked by all the injected fault models. Finally, we present details about the
influence of the target kernel functional component. The failure modes are given in Figure
4.4.
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Figure 4.4: Failure mode distributions for the three injection techniques: global results

4.4.1.1 Comparison between external injected faults

The two external fault models provoke approximately the same failure modes in terms of
nature and quantity. The dominant failure mode (Figure 4.4-a and Figure 4.4-b) is returning
error codes (57% and 45% respectively). This shows the effectiveness of the checks
implemented at the Linux kernel API level. A detailed analysis of the nature of the returned
codes is presented in section 4.4.2.

API invalid parameters provoke less “no signaling” cases. Such an outcome is unusable and
cannot be interpreted. However, it could lead to a failure in a different context than the one
being considered in these experiments.

4.4.1.2 Comparison between all injected faults

We notice in Figure 4.4 the difference in the generated failure modes between the injections at
the kernel API level (Figure 4.4-a and 4.4-b) and in its internal functions (Figure 4.4-c). The
error code rate when injecting inside the kernel is low (2%). On the other hand, 28% of faults
have been detected by hardware-generated exceptions, which means that 30% of faults have
led to detected errors.

Let us analyse the reasons of the difference between the injections at the kernel API level and
in its internal functions. Generally, the kernel calls in Linux consist in up calls to internal
functions as illustrated in Figure 4.1 for sched_setscheduler. The latter calls one function
(setscheduler), which fulfils the required service. One may assume that injections at the
second depth level of this kind of kernel calls (sched_setscheduler, gettimeofday and
setitimer) lead to the same error code. This is true for the sched_setscheduler kernel call
where “Invalid Argument” and “Non existent process” error codes are generated even when
injecting in the third level of the kernel function call graph. However, injections in the second
level of the setitimer kernel call do not provoke “Bad Address” error code and provoke
only an “Invalid argument” error code. This means that the error detection mechanisms for
this function are implemented only at the first level. The analysis of the source code of the
underlying function supports this statement. In fact only the value of the first parameter is
checked in the underlying elementary function, which explains the presence of the “Invalid
argument” error code alone in some experiments.
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Figure 4.4-c shows that 10% of the injected faults in internal function parameters, leads to
kernel hang, which is significantly higher than the 1% observed when injecting external
faults. Also, 22% of the faults injected in internal function parameters lead to application
hang, which is four times more than the observed percentage of external faults (5% and 6%).

4.4.1.3 Failure mode analysis according to functional components

Figure 4.5 presents the observed failure modes per functional component. The top three
figures present the proportions associated with the scheduling component, and the bottom
three are associated with the memory component.

External faults provoke less error codes for the memory component (39% for invalid
parameters and 22% for bit-flips) than the scheduling component (66% for the two injection
techniques). We also notice that when injecting external faults, “No signaling” is the
dominant mode for the memory component (40% for invalid parameters and 60% for bit-
flips). Another outstanding phenomenon is the presence of “Kernel hang” and “Exception” as
outcomes in the memory component, which are absent for the scheduling component. This
indicates that the error detection mechanisms implemented in scheduling kernel calls are
more efficient than those implemented in memory kernel calls.

Internal faults provoke different behaviours between the two functional components too. We
remark especially the rate of the “No signaling” mode, which is of 10% for the memory
component and 61% for the scheduling component. Also the error detection rate (“Error
code” and “Exception”) is different: 50% for the memory component and only 14% for the
scheduling. This shows the sensitivity of the memory component to the type of injected faults
and its higher criticality compared to the scheduling component. The memory component is at
a lower level and nearer the hardware.

a- API invalid parameters b- Bit-flip in API parameters c- Bit-flip in internal function parameters

d- API invalid parameters e- Bit-flip in API parameters f-Bit-flip in internal function parameters

Figure 4.5: Failure mode rates of the scheduling and the memory components
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All the raised exceptions in the memory and the scheduling components are Page Faults. This
exception is raised when the addressed page is not present in memory, the corresponding page
table entry is null, or a violation of the paging protection mechanism has occurred. It detects
errors occurring within the memory. This is why their proportion is greater when injecting in
the memory.

4.4.2 Comparative Analysis of the External Faults based on the Error Codes
Returned

Based on the returned error codes, two kinds of analysis can be carried out. The first consists
of the analysis of the nature of error codes, and the second consists of the analysis of whether
other subsequent kernel calls return error codes.

4.4.2.1 Analysis of the nature of the error codes

Figures 4.4a and 4.4b show that the rate of error codes is greater when injecting invalid
arguments than when injecting bit-flips. Figures 4.6-a and 4.6-b refine these results and show
that generally, for a given kernel call, all error codes generated by the two injection techniques
at API level are of the same nature. Yet, we notice a slight advantage for the bit-flip injection
technique that provides more error codes than the invalid parameters. Also, the rate associated
with each error code is not always equivalent, except for certain cases such as wait4.

The mmap kernel call provides a singular behaviour. As illustrated in Figure 4.6, five error
codes were observed when injecting bit flips (“Out of memory”, “Invalid argument”, “No
such device”, “Bad address” and “Bad file number”) while only one error code is returned
when injecting invalid parameters (“Bad address”).

Figure 4.6: External fault analysis with respect to returned error codes
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4.4.2.2 Error propagation analysis

When injecting within the kernel calls of the memory component issued by the memory
workload, we observed error propagation to other functional components. We did not notice
such propagation for the scheduling component.

Figure 4.7 illustrates error propagation rates when injecting faults in brk, mprotect and
munmap kernel calls. The mmap kernel call does not provoke such propagation when injecting
either invalid parameters or bit-flips. For each arc, the first percentage is associated with
invalid argument technique and the second is associated to the bit-flip technique. We take into
account all cases where an error code is observed. Error codes are returned either by open
(file system component) or by both open and wait4 (scheduling component). For example,
corrupting the brk kernel call with invalid argument lead in 30% of the cases to open
returning an error code and in 55% of the cases to both open and wait4 returning error code.
That does not mean that in 15% of the cases an error code is returned by brk. Figure 4.7
illustrates only the error propagation cases.

Figure 4.7: Error propagation: memory component

Injecting invalid parameters promotes error propagation for the three kernel calls among the
four considered memory kernel calls. However, injecting bit-flips propagates errors only in
the case of mprotect, with rates equivalent to those of invalid parameter technique (7%
versus 9% propagate to open and 87% versus 64% propagate to both open and wait4).

4.4.3 Comparative Analysis Based on the Specific Assertions

We detail hereafter the observations made thanks to the implemented assertions introduced in
Section 4.2.4.3.3. We recall that these assertions are implemented after the analysis of the
source code. We are considering successively the two assertions that lead to relevant results.

The first assertion reports the brk kernel call activity. We have observed in normal operation
(in the absence of faults) that the size of the memory data segment has not to be changed in
64% of the cases (brk does not carry out a specific treatment). Figure 4.8 illustrates the cases
where we noticed a deviation from this normal invocation. Injected faults in the internal
functions used by the mmap kernel call for example improve this rate by 0.5%. This is not the
case for the bit-flip and the invalid parameter techniques at the API where the rate decrements
respectively by 1.5% and 2.5%. This rate decreases by 7%, which is the worst case, when
injecting faults in the parameters of the internal functions called by the munmap kernel call.
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No such deviation has been observed for the scheduling component. There is no error
propagation from the scheduling component to the memory component.

Figure 4.8: brk failure rate variations

The second assertion concerns the “memory pressure”. It represents the number of allocation
requests that the kernel is trying to satisfy and thus the current memory load. The greater this
value, the more the memory becomes a critical issue. Figure 4.9 presents the percentages of
experiments where the memory pressure increases by more than 50% after a fault injection in
the memory kernel calls. The average value of memory pressure is calculated before and after
a fault injection. No such behaviour has been observed in the experiments targeting the
scheduling component.

The influence of injecting faults in internal function parameters on the “memory pressure” is
constant. For all the memory kernel calls, about 90% of the experiments lead to a memory
pressure increase.

For the external faults, we remark an advantage when injecting invalid parameters since they
tend to stress the kernel in more cases than the bit-flip technique. The cases where the bit-flip
technique is equivalent to the invalid parameter technique is when targeting the mprotect
and the brk kernel calls.

Figure 4.9: Memory pressure variation before and after fault injection
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4.4.4 Comparison between Injected Faults and Real Faults

In this section we compare the consequences of the considered real faults (those revealed by
the BLOCK and the NULL checkers) and of all the injected faults.

From Table 4.1, Figure 4.10-a shows that, if their provoked errors are not hidden 42% of real
faults lead to “Kernel hang”, and 25% lead to “Exception”. But, as presented in Figure 4.4-a
and Figure 4.4-b, only 1% of the external faults, lead to “Kernel hang” and only 9% and 6%
lead to “Exception”.

Figure 4.10: Comparison between real faults and faults injected in internal function
parameters

The faults injected in internal function parameters are more or less representative of real
faults. Figure 4.10-b presents the proportion of the observed failure modes without taking into
account the “no signaling” mode. 17% (< 42%) of cases provoke “Kernel hang” and 44%
(> 25%) provoke “Exception”. All we have to do is to adjust the distribution of the faults
injected in the internal function parameters.

The goal of the implemented assertions is to observe the possible correlation between real
errors (caused by real faults) and errors provoked by the three considered injection techniques.
These assertions are designed to detect the targeted real errors. However, we were not able to
activate these assertions with any of the three injection techniques. Consequently, none of the
proposed injection techniques is able to reproduce the same real error.

This is due to the difference in the contexts in which the faults are activated. The real faults
are revealed in the device drivers. Even though kernel calls and device drivers share some of
the kernel internal functions, they are not activated in the same manner, i.e., the injected faults
in the parameters of these internal functions are not activated in the same context. This is
supported by a specific experiment in which we were able to activate a real fault based
assertion. The experiment consisted in injecting faults in the parameters of internal functions
called by the device driver functions. The considered workload inserted the network card
device driver into the kernel. Although the activated assertion is designed to detect errors
provoked by the faults revealed by the BLOCK checker, no kernel hang was observed.
Accordingly, we can conclude that the error remains hidden.
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4.5 Summary and conclusion
This work compares the impact of three types of SWIFI techniques on the Linux OS (version
2.4.0). Two of them target the kernel call parameters at the API (external faults) with two
different fault models, namely: i) bit-flip corruption and ii) provision of invalid parameters.
The third one applies bit-flips targeting the parameters of the internal functions of the kernel.
We have developed an experimental framework that supports these three injection techniques
and a comprehensive set of observations. The outcomes of the experiments include a wide
range of failure modes either explicitly reported (e.g., exceptions) or not (e.g., hangs). In
addition, specific assertions were implemented to provide a finer grain monitoring; in
particular, some of them were deduced from the analysis of the effects caused by real faults.

The results presented in this paper refer to experiments focusing on the scheduling and
memory components of the kernel. Depending on the target functional component, distinct
failure modes are observed; in particular more exceptions are raised when targeting the
memory component. Indeed, the scheduling component is at a higher abstraction level than
the memory component, which is closely related to the mechanisms offered by the hardware.
In addition, while we observed error propagation when injecting in the memory component,
this was not the case for the scheduling component. Moreover, at the difference of the
scheduling component, the faults injected into the memory component have a great influence
on the level of stress of the kernel as revealed by the specific assertions. We can conclude that
either the injected faults have not a great impact on the stability of the scheduling component,
or more work is needed to develop improved assertions.

API-level fault injection is good candidate to assess kernel robustness. Flipping bits in kernel
call parameters is easy to implement and does not need any a priori analysis of the parameter
data types. However, it requires a lot of time, as it needs 32 injections per parameter for a 32-
bit kernel and simple data types. Applying invalid parameters is eight times faster (for a
complete campaign) compared to a bit-flip campaign, but it needs an a priori analysis of the
kernel call parameters.

Although the provoked failure modes are comparable for both techniques independently from
the functional component, the bit-flip injection technique provokes larger range of error code
types than the invalid parameter injection technique. In particular, we have detailed the case
of a kernel call (mmap) where out of the five error codes provoked by bit-flips only one could
be provoked by the application of invalid parameters. Nevertheless, applying invalid
parameters is proner to propagate faults than flipping bits, especially from the memory
component to other kernel functional components as previously noted. Also, the proportion of
experiments that lead to an increase of the memory pressure is more important when injecting
invalid parameters.

Table 4.4 summarises the pro and cons for each technique. It shows that the invalid parameter
technique provides more advantages than the bit-flip technique. In addition, it is worth noting
that the a priori analysis could be done only once, as is the case for the Ballista-based POSIX
test suite, which can be applied to all POSIX compliant systems.
Compared to the effects induced by external faults, flipping bits in internal function
parameters provoked distinct erroneous behaviours. Indeed, many hardware exceptions were
triggered by this technique, and the proportion of error codes observed was lower than for the
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other two techniques. The implemented assertions exhibit further such behavioural
differences.

Table 4.4 Comparative analysis between API-level fault injection techniques

Experiment
duration

Ease
of application

Error codes
provoked

Error
propagation

Memory
pressure

Significance
of experiments

bit-flip – + + – – –
Invalid argument + – – + + +

Concerning the representativeness point of view, we have observed that external faults
provoked very distinct behaviours compared to those induced by the real internal faults we
considered (device driver faults). In particular, external faults were not able to activate the
assertions based on real faults. This tends to indicate that it is unlikely that device driver faults
could be easily emulated by injecting only at the API level, at least for the Linux kernel.

On the other hand, faults injected in internal function parameters were found, to some extent,
representative of the considered real faults. Indeed, although the internal function parameters
technique was not able to activate the assertions based on real faults, similar failure modes
were provoked. This shows that the selected type (bit-flip) and location (interface) of the
injected faults are not sufficient to provide a faultload matching the errors provoked by the
considered real faults. Other fault types, such as invalid arguments and locations (e.g.,
assignation statements), need to be experimented. In addition, internal functions should be
activated in the right way: from the driver interface, rather than from the kernel API. The
experimental framework permits to easily implement those extensions.

The workloads used were selected to activate the kernel functional components in a typical
way. The targeted kernel calls we have considered in this work are the most used in practice.
However it would be interesting to target additional kernel calls for a each functional
component.

Even though the two experimented kernel functional components are judged to be the most
critical components, more work is needed to target the other kernel functional components.
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5 Software Faults from Application (Language) Point of View

Software faults (also called software defects or bugs) have been consistently recognised as the
major cause of computer outages. Several research studies show a clear predominance of
software faults [Kalyanakrishnam et al. 1999, Lee & Iyer 1995, Sullivan & Chirallege 1992,
Gray 1990] and given the huge complexity of today’s software, the weight of software faults
on overall system dependability will tend to increase. Regular readers of computer risks
newsgroups, such as the ACM Forum on Risks to the Public in Computers and Related
Systems [Newman 2001], can easily attest the relevance of software faults in many computer
incidents.

The complete elimination of software defects during software development process is very
difficult to attain in practice. In addition to well-known technical difficulties of the software
development and testing process [Musa 1999, Lyu 1996], practical constraints such as the
intense pressure to shrink time-to-market and cost of software contribute to the difficulties in
assuring 100% defect free software. Therefore, the actual scenario in the computer industry is
having systems in which software defects do exist but no one knows exactly where they are,
when they will reveal themselves, and, above all, the possible consequences of the activation
of the software faults. In a world where components of the shelf (COTS) are used more and
more to build larger systems, the residual software faults represent a growing risk.

Many software reliability models and measurement procedures have been proposed for the
prediction and estimation of measures of quality such as the number of faults remaining in a
given software package. However, in addition to the difficulties in handling the extreme
complexity of today’s software and the limitations of the necessarily simple models with few
parameters actually related to the project or software package at hand, the problem of these
software quality measures is that they are mainly developer-oriented and do not give a
measure of the possible impact of residual faults on the operation and on the end-user.

The use of fault injection to emulate the effects of real software faults has been recognised as
potentially very useful [Voas et al. 1997, Christmansson & Chillarege 1996]. In practice, the
injection of software faults consists of the introduction of small changes in the target program
code, creating different versions of a program (each version has one injected software fault).
The way faults are injected resembles the well-know mutation technique [DeMillo et al.
1988], but the injection of software faults has completely different goals. While mutation has
been used for software testing to identify the best sets of test cases or to study the error
propagation process, the injection of software faults in DBench is an important part of the
faultload component of dependability benchmarks.

In general, the injection of software faults can be used as a complement to established
software reliability engineering techniques [Kanoun et al. 1997, Musa 1999] and other
traditional techniques meant to estimate measures of quality for software modules or
products. Additionally, the injection of software faults is an effective way to validate fault-
handling mechanisms and to evaluate the behaviour of a given system in the presence of the
injected faults.
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However, the injection of software faults has three main problems:

• Fault representativeness – The injected faults must be representative of real software faults
or, at least, should cause similar erroneous behaviour.

• Intrusiveness – As the injection of software faults consists of small changes in the code,
the injected module/program is not the same anymore, which may invalidate the
observations made in the target system. The actual techniques used to inject the faults and
to instrument the target program may cause additional intrusion.

• Lack of techniques and tools – In spite of the many fault injection tools proposed in the last
two decades, very few proposals have addressed the injection of software faults (most of
the tools emulate hardware faults) and in practice there are very few tools available for the
injection of software faults. If we consider the specific context of DBench, the very nature
of benchmarking implies the need of portable and easy to use techniques for the injection
of software faults.

Although this deliverable is specifically devoted to fault representativeness, the fact that the
problems mentioned above are intimately related one to each other means that is virtually
impossible to separate representativeness from the other aspects. Thus, we propose to address
these fundamental problems in the following way:

• Use of educated mutations to improve the representativeness of the injected faults as
much as possible. The idea is to define a subset of selective faults based on available field
data on bug reports and common programming language pitfalls. In this way, injected
faults are not arbitrary mutations of the code but they do correspond to the most common
programming mistakes.

• Use of a new technique to emulate software faults by selective mutations introduced at
the machine-code level.

• Propose an operating scenario for the injection of software faults in which faults are
injected in one module to evaluate the behaviour of the rest of the system. This solves
the problem of intrusiveness, as the injected module is not under evaluation (see Figure
5.1). Some examples of concrete use of this scenario are: a) injection of faults in a device
driver to evaluate the way the operating system (OS) behaves in the presence of a “mad”
driver; b) injection of faults in the OS to evaluate a fault-tolerance layer at the application
level; c) injection of faults in an application process (emulating a buggy application) to
evaluate the probability of error propagation to other processes; etc, etc.

The technique proposed for the injection of software faults is called Generic Software Fault
Injection Technique (G-SWFIT) and consists of finding key programming structures at the
machine code-level where high-level software faults can be emulated. This way, it is possible
to have a library of machine-code level structures and possible software faults that once
introduced in such programming structures can emulate specific classes of high-level software
faults. The accuracy of the injected faults and the generalisation of the proposed method
(concerning high-level languages, compilers, compiler optimisation options, processor
architecture) has been carefully studied and the available results suggest that the technique is
very accurate and can be easily ported to practically all type of systems (we mainly need to
define specific parts of the fault library to accommodate the emulation of faults in a new kind
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of system). Finally, as the proposed technique works at the machine-code level, it is not
required to have the source code of the target program, which makes it possible to apply the
proposed technique to virtually any program (particularly relevant for the evaluation of COTS
components or COTS based systems).

Although G-SWFIT has been specifically conceived for dependability benchmarking, we
believe that this technique can be used in several other scenarios. The following points
summarise the possible uses of G-SWFIT (obviously, the technique will be used in DBench
for dependability benchmarking only):

• Dependability benchmarking. This is the central goal of G-SWFIT. Dependability
benchmarking faultloads require generic, portable, and easy to use fault injection
techniques and these are exactly the target features behind G-SWFIT design. In fact, the
technique can be applied to any software module, even to software modules for which the
source code is not available, and the technique does not require a complex fault injection
tool to be used.

• Evaluation and validation of software fault-tolerance mechanisms. Knowing the
difficulties in achieving 100% defect free software, it is vital to assure that software
products can deal with residual faults in an acceptable way. This is particularly important
for mission and business critical systems, as the required software fault tolerance
techniques must be carefully tested and evaluated. G-SWFIT can be used as a generic
technique to inject software faults for the evaluation and validation of software fault-
tolerance mechanisms.

• Evaluation of the behaviour of software products in presence of faults and validation of
wrappers. Even for application areas where the use of software fault-tolerance techniques
are not indispensable, it is important to have means to evaluate the way software products
behave in the presence of faults, either faults in their own code and faults in 3rd party
components, in order to improve mechanisms used to wrap the effect of the faults and
mechanisms meant to handle faults in an acceptable way (e.g., warning the user and
terminating the application in a safe way instead of crashing as a consequence of a fault).
From the application developer/integrator perspective this means protection against faults
in 3rd party libraries, shrink-wrapped components, or even faulty operating systems.

• Software risk assessment and prediction of worst-case scenarios. The emulation of
software faults can be used, as proposed in [Voas et al. 1997], to optimise the testing phase
effort by performing risk assessment and prediction of worst-case scenarios. This way, it is
possible to quantify the impact of software faults from the user point of view and get a
quantitative idea of the potential risk represented by residual faults. G-SWFIT allows
performing this evaluation in COTS software components, even when the source code is
not available.

5.1 Software Faults Emulation at Low-Level Executable Code

G-SWFIT technique consists of modifying the ready-to-run binary code of software modules
by introducing specific changes that correspond to the code that would have been generated
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by the compiler if the software faults were in the high-level source code6. A library of
mutations previously defined for the target platform guides the injection of code changes: the
target application code is scanned for specific low-level instruction patterns and selective
mutations are performed on those patterns to emulate related high-level faults. Depending on
the size of the low-level mutation library and the settings specified by the user, a number of
versions of the original target application are created, each one containing an emulated
high-level software fault. Figure 5.1 depicts the key elements of this technique.. This
technique was presented and its accuracy evaluated in [Durães & Madeira 2002]. Although
not strictly necessary, a commercial disassembler can be used to produce assembly listing to
assist guidance of the fault injection process.

Figure 5.1 - Software fault emulation process

The definition of the low-level mutation library is based on two principles: the existence of a
set of simple high-level programming errors that occur frequently and the knowledge of how
high-level languages are translated into low-level code, in particular how high-level
programming errors translate into specific low-level instruction sequences.

Many of the defects that remain in software modules after deployment are usually simple
programming errors (at least if analysed independently from their context) or wrong usage of
language constructs. Their complexity arises from the code that contains them [Madeira et al.
2000, Daran & Thévenod-Fosse 1996, Carter 2001a, Cramon 2001]. Such defects are
classifiable into a few high-level fault classes, making possible a definition of a set of
common errors. In order to accurately inject, at machine language level, faults that represent
real high-level software defects, it becomes necessary to know in detail to what high-level
constructs they do correspond to.

Orthogonal Defect Classification (ODC) is based on software faults found in real programs,
and classifies software defects in a set of non-overlapping classes (the classification is based
on the way faults have been corrected) [Chillarege 1995]. ODC classes of faults will be used
as starting point, but as each class includes a very large number of possible faults a more
detailed description is necessary.

Since the main purposes of this section is to show that high-level software faults can be
emulated with a reasonably accuracy and that the technique to do that is feasible, a pragmatic
approach was followed to identify the types of high-level software faults to emulate. We have

                                                
6 Of course, it would be easier to apply the technique directly to the source code and recompile

mutated versions. However, as the source code is not always available, we decided to target the
technique to the generic case: the one in which is source code is not available.
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analysed several sources, and built a list of possible software bugs that can reasonably be
expected to occur frequently. We call these faults “educated mutations” to emphasise that
they include inputs from experience and from field data on real software faults.

To assist definition of the fault library we used a synthetic application containing all the
pertinent key constructs and structures, both with and without the considered high-level
faults. The observation of the generated code for both cases (with and without faults) allow us
to identify the specific machine code patterns where a given class of faults should be
emulated by low-level mutations. Using this application with several compilers and different
optimisation settings, we could understand how such variations affect low-level code
generation and identify patterns for a given class of faults that remain constant. Additionally,
existing coding standards are also considered to further refine the low-level instruction
patterns related mutations. Those steps are depicted in Figure 5.2.
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Figure 5.2 - Machine language instructions patterns and mutations definition

5.2 Fault Representativeness Evaluation

The accuracy of the proposed methodology for the emulation of software faults was evaluated
through a case study, defined to represent the common dependability benchmarking scenario
addressed in DBench. The following issues are relevant for the considered scenario:

• High-level language assumed for the source code: the language must be representative of
the languages used for COTS software.

• Faultload definition: the faultload must emulate a set of high-level errors that are
representative of common programming errors.

• Generalisation: the technique used for fault injection and its results should be portable to
other platforms.

C programming language was selected for the case study to evaluate both the feasibility and
accuracy of the emulated faults. This selection is based on two main reasons: a) the C
language is one of the most widely used, therefore significant in the COTS scenario, and b)
The C language has many features similar to other languages also commonly used (e.g., C++,
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JAVA). However, the methodology described here is in no manner tied to the language itself,
and can be easily ported to other languages (this issue is discussed in section 5.3.3).

The study of the G-SWFIT technique representativeness was carried out in three steps:

1) The set of high-level language software faults were identified. This step also comprised the
elaboration of high-level faulty versions of the target applications through educated
mutations.

2) The low-level (i.e., machine-language) instruction patterns, where mutations can be
inserted for emulation of the high-level faults, were defined. The related mutations were
also defined in this step.

3) Fault emulation was performed through the injection of mutations defined in the prior step
into the low-level code. A number (from tens to thousands) of mutants were generated
from the original executable version. The execution of each mutant with a representative
input profile is a fault injection experiment in our context. The effects of the high-level
language software faults and the equivalent low-level faults emulated by G-SWFIT were
carefully compared.

Sections 5.2.1 and 5.2.2 present the details of the first two steps. In Section 5.2.3 the
experimental environment is described, including the target applications used. The results are
presented and discussed in section 5.2.4.

5.2.1 High-Level Software Faults Set Identification (Educated Mutations)

The characteristics of C programming language were analysed to obtain a set of errors that are
prone to be made in this particular language, obtaining a high-level fault characterisation
related to ODC but having a more detailed characterisation in what concerns its relationship
with the syntactic rules of the language behind the faults. An extensive research on most
common C programming bugs has been carried out, using various information sources
ranging from programming manuals and best practice tutorials [Koenig 1989] to error reports
[Carter 2001a, Cramon 2001]. Reference manuals of a tool specifically designed to assist
programmers to avoid errors were also used to identification of the high-level fault set
[Gimpel 2001].

Since the goal is the emulation of high-level faults that typically remain in software products
after deployment, the identification of such faults is additionally guided by the following
rules:

a) Faults must be relatively common (i.e., likely to appear in available software products).

b) Faults must not generate syntactic errors.

c) Faults must not be too obvious.

The first rule was enforced with the help of available bug reports and best practice tutorials
mentioned earlier. Faults that generate syntactic errors have been excluded, because such
faults cannot be compiled into executable code. At most, faults are allowed to generate
warning messages, as this is very dependent on the compiler. Some compilers are smarter
than others, raising the possibility of some errors being left undetected by less smarter
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compilers (e.g., a function with an execution path that uses a variable not initialised is a
situation that some compilers do not always detect). Finally, the high-level programming
faults considered should not be so obvious that only novice programmers could/would make
them.

The considered high-level faults were characterised according to the following items:

• Applicable ODC class: the characteristic relates the mentioned errors with the ODC
classes. Some errors fit in more than one OCD class, depending on the way that those
errors would be corrected.

• Example of possible cause: this helps to understand how the error may appear in the source
code. This is a fundamental characteristic of the considered errors, as this work analyses
the faults mainly why do faults appear instead by how they can be corrected. The possible
causes are very important to identify all the different incarnations of each fault (this will be
detailed further on).

• Compiler ability to detect the error: the ability of available (common) compilers to detect
and warn the programmer of the possible existence of that error. For this evaluation, three
different compilers were used (VC++, BorlandC and GCC). This characteristic is
important, as it is directly related to the probability of leaving the error uncorrected in the
program after deployment.

• Language specific degree: this characteristic relates each particular error with the
possibility of that error appearing in all common languages, or instead, if it is something
specific to one or few languages. This characteristic gives some insight on the
generalisation of the technique to encompass common faults in other programming
languages (generalisation issues will be detailed in Section 5.3).

The resulting set of high-level common errors in C programming language is presented in
Table 5.1. Due to its nature, not all faults presented in Table 5.1 can be emulated with the
same degree of accuracy. For example, the fault “missing statement due to non-terminated
comment” is something that can never be accurately emulated with the same accuracy degree
of the “assignment instead of equality comparison”. For the latter, locations inside the
low-level code where an equality comparison exists can be identified, however there is no
way, without the source code, to know where a comment originally was. This makes this
particular type of fault fall outside the scope of the G-SWFIT technique. Others faults,
although possible of emulation through this technique, will have lower emulation accuracy.
For example, the locations suitable for emulation of the fault “wrong usage of parameter call”
can be easily identified inside the low-level code, however, since the type of data of the
parameter is lost in the low-level language, the majority of low-level mutations would
correspond to high-level faults causing syntactic errors when compiling.

The types of high-level faults emulated in the test-case are presented in Table 5.2. Some of
the previously presented high-level faults were grouped into the same type since they can be
emulated trough the same mutations applied to the same machine-code instruction patterns. It
is worth noting that a total of four different ODC classes are covered (note that ODC has six
classes directly related to the code), and these four classes correspond to 79.2% of faults
found in the field according to data form the actual use of ODC at IBM [Christmansson &
Chillarege 1996].
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Table 5.1 – High-level fault case study for C language

ODC class
Fault type
description Example of possible causes

Examples of educated
mutations

ODC
also

Compiler
ability to
detect

Language
dependency
degree

Assignment
Missing or wrong local
variable initialisation

Initialisation dependent of execution
path

Omission of first assignment to
local variable

Some Low

Assignment where
comparison was
intended

If (a = b) instead of if (a = = b)
Change expressions “==” to
assignment

Alg. Some / High High

Miss by one in
decisions

Lack of attention; If (a < b) instead of if (a <= b) Assig. None NoneChecking

One iteration too few
or too many

Lack of attention; Misunderstanding
of variable meaning

while (a <= b) instead while (a <
b)

Assig. None None / low

Missing return
statement

Non-trivial execution paths inside
functions

Omit return statement were
syntactically possible

Some None

Wrong return
statement

return var with var not properly set
Omit previous assignment to
variable used with return.

Low / Some None
Interface

Wrong usage of
parameters in function
call

Func(x,y) instead of func(y,x)
and x and y with compatible data
types

Change order of values in the
function call (only if compatible
data type)

None None

Miss aligned else

Bad indenting practice plus single
statements mixed with multiple-
statement portions of code inside the
if or else

Omission of curled brackets
inside complex if-else chains

Alg.
None / very
low

Some / low

Binary operator usage
where logical
operators were
intended

Typo;
Lack of attention

Change of a && b to
a & b

Check.
Assign.

Some (low) High

Wrong logical
expression due to
wrong usage of
operator precedence

Usage of complex expressions
Example:
(a == b && c == d || d == e)

Insertion, omission or change of
parenthesis in complex
expressions

None / very
low

High / Low

Missing statement
Non-terminated comment (terminated
one line latter, for instance) A/*p (p is
a pointer)

Omission of one statement
following a comment (Assign)

None None / Low

Algorithm

Missing function call Lack of attention

Removal of the function call if
that function appears by itself,
i.e., its not part of a bigger
statement

Alg. None None

Table 5.2 - High-level faults emulated in the case study

Type of high-level fault emulated in the test-case Encompassed faults: ODC applicable class

Assignment instead of equality comparison Assignment where comparison was intended Algorithm, Checking

One iteration too many or too few
Miss by one

Miss-by-one comparison error

Checking, Assignment,
Algorithm

Missing return statement
Missing or wrong return statement

Returning a variable not properly set
Interface, (Assignment)

Missing local variable initialisation Missing local variable initialisation Assignment

Missing function call Missing function call Algorithm

5.2.2 Low-Level Instruction Patterns and Mutations

As mentioned in 5.1, a synthetic program containing all the relevant high-level code
constructs was used to assist the task of identifying the machine-code patterns and the
corresponding low-level mutations. Additionally, the low-level instructions patterns have
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been enhanced with the observations from standards on C compilation [Carter 2001b] (e.g.,
the passing of parameters to functions in strictly regulated by standards).

The low-level instruction patterns must be generic enough to match the different ways that the
same construct can be translated into low-level code, and specific enough to left out (not
matching) other constructs that have similar patterns but do not match the intended high-level
fault. For most of the identified high-level bugs it was possible to find patterns that satisfy this
condition. However, some patterns also match some other high-level instructions or
constructs that are not related to the intended high-level fault. This leads to the possibility that
some injected mutations at the low-level code do not correspond totally to the intended
high-level error.

5.2.2.1 Assignment instead of an equality comparison

“Assignment statements instead of an equality comparison” can take several forms in the
high-level source code: a comparison inside an if construct or a comparison inside a while
or do-while condition; in both cases, a comparison can be made between two variables or
between a variable and a value. Therefore, several patterns in low-level language are
associated with this bug. All of them can be seen in Table 5.3, as well as their meaning and
related mutation.

Table 5.3 Assignment instead of comparison patterns

Description Search pattern Constr Mutation
Comparison of a variable to another variable

if (var1 = = var2) { }
MOV reg, mem1
CMP reg, mem2
JNE ahead

C1
MOV reg, mem2
MOV mem1, reg
CMP reg, 0
JE ahed

While (var1 = = var2) { }

do { } while (var1 = = var2)

for (…; var1 == var2; …) { }

MOV reg, mem1
CMP reg, mem2
JE back

C1
MOV mem1, reg
CMP reg, 0
JNE back

Comparison of a variable to a value

if (var = = value) { }
CMP mem, imed
JNE ahead

C2
MOV mem, imed
CMP mem, 0
JE ahed

While (var = = value) { }

do { } while (var1 = = value)

for (…; var1 == value; …) {}

CMP mem, imed
JE back

C2
MOV mem, imed
CMP mem,0
JNE back

Unfortunately the patterns used to find equality comparisons between a variable and a value
also match comparisons between non-lvalues (rvalues) and variables. Although highly
uncommon, such things as “if (4 == a)” can occur. No pattern was found that could match
“lvalue = = rvalue” without matching “rvalue = = lvalue”, therefore, some deviations are
expected from a perfect match in the accuracy evaluation results. Another form of use of a
rvalue at the left of a comparison is when the result of a function call is used at the left side of
the comparison operator. To avoid matching this specific situation, the patterns must verify
two constrains, shown in Table 5.4.
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Table 5.4 Assignment patterns constraints

Assignment instead of comparison pattern constraints

Constraint Description

Pattern must not be preceded by:

C1
CALL address
ADD ESP, value
MOV mem1, EAX

nor
CALL address
MOV mem1, EAX

Pattern must not be preceded by:

C2
CALL address
ADD ESP, value
MOV mem, EAX

nor
CALL address
MOV mem, EAX

5.2.2.2 Missing or wrong return statement

“Missing or wrong return” errors can appear in different forms: a return statement may be
left out in the source code by mistake (e.g., when a function have several execution paths, one
of them without the explicit return expression) or using an auxiliary variable to maintain
the value that will be returned and there is one possible way (execution path) of that variable
not being properly set. The patterns used to match suitable locations, shown in Table 5.5,
depend on the identification of the starting and ending points of a function. Fortunately, that is
a relatively easy task, since the beginning and ending points of a function or procedure
translate to very specific patterns of code, as can be seen in Table 5.6.

Table 5.5 Missing or wrong return statement patterns

Description Search pattern Mutation

return expression (other
than just a value)

MOV EAX, mem
zero or more instructions except: MOV EAX, … and XOR EAX,
EAX
EAX modifying instruction
stack cleanup and return

All instructions are
omitted except the
stack frame cleanup
and return

return value

MOV EAX, value
Zero or more instructions except: MOV EAX, … and XOR EAX,
EAX
EAX modifying instruction
Stack cleanup and return

All instructions are
omitted except the
stack frame cleanup
and return

return 0 (typical value)
XOR EAX, EAX
Stack cleanup and return

XOR EAX, EAX
removed

return not-properly-
-set-variable (usage of a
variable in the return
which was not correctly
set)

MOV EAX, mem
Zero or more instructions except: MOV EAX, … and XOR EAX,
EAX
EAX modifying instruction
Stack cleanup and return

MOV mem, …
instructions in the
same function
omitted (each one
counts as a different
fault)

Table 5.6 Function start and end patterns

Machine code
sequence

Meaning

Function
start

PUSH EBP
MOV EBP, ESP

Stack frame
initialisation

Function
end

MOV ESP, EBP
POP EBP
RET

Stack frame
cleanup and
return
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It is quite clear at this stage that some patterns are not trivial, which means that conventional
fault injectors would have problems in inserting the low-level code modification. The
approach proposed in the G-SWFIT does not have any special difficulty regarding pattern
complexity since mutations are done prior to execution of the target application, when
complex pre-processing is possible without causing intrusion to the target application.

5.2.2.3 Miss-by-one boundary checking

The low-level instruction patterns generated by the compiler needed to identify “miss-by-one”
type faults are relatively unique and easy to identify, as can be seen in Table 5.7. Mainly, the
patterns consist of conditional jump instruction. The mutations themselves are jump
instructions (to the same target address) but with the “equal” condition reversed, i.e., if the
condition is jump if greater(less), then it will be mutated to jump if greater(less) or equal; if
the instruction is jump if greater(less) or equal, then the mutated instruction will be jump if
greater(less). All patterns and related mutations presented apply to high-level expressions
involving both variables and literals.

Table 5.7 Miss-by-one patterns

Description + example Search pattern Mutation
Greater/Above test

JG address JGE addressOriginal expression: …> …
Mutated expression: … >= … JA address JAE address

Greater/Above or equal test

JGE address JG addressOriginal expression: …>= …
Mutated expression: … > … JAE address JA address

Less/Below test

JL address JLE addressOriginal expression: …< …
Mutated expression … <= … JB address JBE address

Less/Below or equal test

JLE address JL addressOriginal expression: …<= …
Mutated expression: … < … JBE address JBE address

5.2.2.4 Missing or wrong local variable initialisation

The patterns used to identify locations suitable for the emulation of faults related to missing
or wrong initialisation in local variable just find the first occurrence of an assignment to a
location inside the stack space in each function. These patterns are shown in Table 5.8. To
work properly, the identification of function starting and ending points is required, which is
done using the patterns presented in Table 5.6.

The pattern for wrong initialisation is basically the same, with the difference that the mutation
introduced is different (assignment of incorrect value, or variable, or expression). As
expected, some of the patterns presented can be used to emulate different high-level faults,
although they are quite similar. This fact helps maintaining the set of low-level patterns and
mutations in a manageable size.
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Table 5.8 Missing local variable initialisation pattern and mutation

Description Search pattern Mutation

First occurrence of value assignment to a location in the stack
memory space (in a given procedure code)
local_var = value
local_var = some_var
local_var = expression

First occurrence of
MOV offset[EBP], …
for each given offset

MOV
instruction
removed

5.2.2.5 Missing function call

The patterns used to identify locations suitable for the emulation of faults related to a missing
function call are shown in Table 5.9. Such patterns and its related mutations are those on. In
order to avoid removing a function call which return value is used, i.e., the call itself is
located inside an expression, the eligible locations for fault emulation must comply to the
constrains shown in Table 5.10. The rationale for avoiding removing functions calls located
inside expressions is that such high-level mistakes are more difficult to make, as the compiler
can easily detect that the resulting expression is incomplete. On the other hand, the simple
omission of a function call that appears by itself in a statement is something that can hardly be
detected by any compiler.

Table 5.9 Missing function call pattern and mutation

Description Search pattern Mutation

Occurrence of a function call by itself (i.e., the whole statement where it
appears is the call itself)
Correct: some_function( ….. )
Bug: function call omitted

CALL target-address CALL instruction
removed

Table 5.10 Missing function call pattern constraints

Missing function call pattern constraints
Description Rationale Examples of high-level

code being avoided
Pattern must not be followed by any usage of
the value of the AX/EAX register before
another call, jump, ret instruction or
assignment of a value to that register

Usage of AX/EAX register in that manner
following a function call would mean that the
return value of that called function is being
used

var = function();
if (function() == ….) {}
var1 = var2 + function();

One important aspect is the use of macros in the high-level source code, for such macros may
expand to a sequence of instructions without any function call whatsoever. This may cause a
slight difference in the observed behaviour of target applications regarding executions of
high-level faults and low-level faults.

5.2.3 Experimental Set-Up for Evaluation of the Accuracy of the Proposed
Technique

To evaluate the accuracy of the emulation of the high-level faults we compared the effects
(program failure modes) of high-level educated mutants with the ones obtained with low-level
mutations inserted using G-SWFIT. The first step was, of course, to build the library with
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low-level patterns and the corresponding high-level faults, using the strategy explained in
previous sections.

The correctness of the outputs generated in each run (when the program terminates and
generates results) was evaluated using an oracle that knows the correct results for all the input
vectors used in the experiments. The list of correct results has been obtained by running each
application with no faults for all the input vectors. In addition to the correctness of the results,
other aspects of the application behaviour have been used, leading to the following failure
modes:

• Correct behaviour (“correct”): the application produced the expected result in the allotted
time and did not cause any abnormal event during its execution. Either the injected fault
was not activated or it was tolerated by the inherent program redundancy. To minimise the
possibility of the injected fault not being activated, a large number of different inputs were
used with each mutated version.

• Uneventful execution but with incorrect results (“error”): the application terminated but
the results were incorrect.

• Erratic behaviour (“erratic”): the application behaved in an unpredicted manner. The
injected fault was activated and produced consequences that were not within the normal
parameters of execution (for instance, the application produced an incoherent error
message, that was not either an error message or success message), which is of no use to
the surrounding environment. Thus, there is no feedback to enabling the determination of
the success of the requested task.

• The application hanged (“timeout”): the situation is detected by allowing a
more-than-enough time interval for its completion. If the application does no terminate
within that interval, then it is assumed that it hanged and is terminated by an automated
tool.

The target applications were chosen according to the following three rules:

a) The application should not be too simple, in order to be representative of commonly used
applications.

b) The selected applications must produce a deterministic output from a specific input, to
enable the automation of the equivalence testing procedure.

c) Source code should be available. Although this is not necessary for the actual use of the
proposed technique (on the contrary, our main goal is to avoid the need of the source code
to emulate software faults) the evaluation of the accuracy presented in the paper needs the
source code to compare the effects of low-level mutations with known high-level faults.

The selected target applications are the following:

• Lzari: This application compresses a file using an arithmetic compression algorithm,
producing two new files, being the first the compressed version of the original file and the
second the result of the decompression in order to obtain the original file again. In order to
fully exercise the program algorithm a variety of input files have been chosen including
both hard to compress data (such as jpeg files) and easy to compress (such as text files).
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• Camelot: This application produces the minimum number of moves necessary to gather a
king and one to 63 knights in the same position of a chessboard. The usage of this
application provides the additional advantage of having a number of versions each
containing a real programming error, which have been used to help the definition of the
high-level faults [Madeira et al. 2000].

• Gzip: This application is a widely used compression tool available in most Unix boxes. A
port for the win32 environment was used in this work. As Gzip is a real-world commonly
used application, its inclusion in this work provides a good degree of confidence of the
deployment of this technique to COTS components. The fault injection was performed
over the compression modules.

The host machine is an Intel Pentium III machine running Windows2000. Low-level fault
injection was carried out with the aid of tools written in perl language. The injection itself is
done into the assembly language file, which is produced by the compiler. The decision to
inject into the assembly language instead of the executable file was made since it is in the
context of an experimental work. The final injection tool for practical low-level fault injection
works directly in the binary code.

A specific tool was implemented to launch the target applications and collect information
about the way it terminates and if it terminates at all. This tool launches the target application
and waits for its termination. If the timeout period has expired and the target application did
not terminated, then it is forcibly terminated. When the application terminates normally, the
return code is collected.

5.2.4 Results and Discussion

Table 11 summarises the experiments performed. For each fault and fault level (i.e. original
high-level faults and equivalent low-level faults injected by G-SWFIT), a different executable
file was produced and run against all the inputs for that application (70 for Lzari and Gzip,
120 for Camelot). Figures 5.3 through 5.7 show the behaviour observed after each run. From
a global point of view, the behaviour of the target applications was mainly the same for both
high-level faults and its emulated low-level counterparts, which suggests that educated
mutations at the source code level can be emulated by G-SWFIT at the machine code level
with a good precision. The following paragraphs discuss the results in more detail.

Table 5.11 Injected faults and executed runs

Fault Application (# faults)

Type Level Lzari Camelot Gzip

High 9 7 17Assignment where equality
comparison was intended Low 12 8 20

High 51 29 34Miss by one in inequality
checking Low 61 32 33

High 5 8 3Missing return or return
variable not initialised Low 5 8 3

High 16 1 6Local variable not properly
initialised Low 15 1 8

High 33 17 14
Missing function call

Low 29 17 10

Total runs 16520 15360 10360
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Considering “missing or wrong return statement” faults (Figure 5.5), all applications revealed
a perfect match between the behaviour of the high-level faulty executables and the low-level
faulty ones. This suggests that the patterns and mutations used to emulate the missing or
wrong return statement can indeed emulate this fault with very good accuracy.
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7% Correct

41%
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46% Error
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24%
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42%

Erratic
34%

Error
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Figure 5.3 – Results for miss-by-one boundary check.

Figure 5.4 – Results for assignment instead of equality

comparison

Regarding “missing function call” faults (Figure 5.7) and the “miss-by-one” faults (Figure
5.3), a very good correspondence was observed for all applications. Minor differences were
noted however, especially for Gzip. This small difference of behaviour is explained by the use
of macros within the high-level source code. At high-level, such macros resemble function
calls, but the corresponding machine-code instruction sequence does not necessarily contain a
CALL instruction. This has the consequence of some high-level missing function call not
being emulated at low-level. Also, because the code corresponding to the macro definition is
replicated whenever such macro is used, if the macro definition contains a fault location, then
a single high-level fault location will translate to several locations within the low-level code.
This is indeed the cause for the difference of behaviour observed for the Lzari application
regarding the “miss by one” fault. Due to the small differences observed in the behaviour, it
can be said that both missing function calls and “miss by one” faults can be accurately
emulated by the patterns and mutations used in the case study. It is worth noting that there is a
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large percentage of correct results (especially regarding Gzip), which suggests that these faults
could be remain undetected, as the application worked correctly for many test cases.

Regarding “assignment instead of equality comparison” faults (Figure 5.4) and “missing local
variable initialisation” faults (Figure 5.6), similar behaviour of the target applications was still
observed. However, some differences were noted for Lzari and Gzip. Considering “missing
local variable initialisation” faults, the application behaviour difference can be explained by
the use of register variables in the source code. Regarding “assignment instead of equality
comparison” faults, the difference is caused by the fact that the patterns used to find suitable
locations for the injection of this fault also matched some locations were such faults could not
be emulated, namely, locations that were originated by high-level expressions of the type
“rvalue == something”, which cannot be mutated to “rvalue = expression” without generating
a syntactic error. Although a perfect match in application behaviour was not attained for these
two kinds of faults, the reasonable match observed suggests that these faults can still be
emulated in this way.
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Figure 5.5 – Results for missing or wrong return statement. Figure 5.6 – Results for missing local variable initialisation



DBench Deliverable ETIE2 Software Faults from Application (Language) Point of View

77

Lzari

Lzari - High level - Func. call

Timeout
6%

Correct
26%

Erratic
65%

Error
3%

Lzari - Low level - Func. call

Timeout
6%

Correct
24%

Erratic
67%

Error
3%

Camelot

Camelot - High level - Func. call

Timeout
29%

Correct
59%

Erratic
12%

Error
0%

Camelot - Low level - Func. call

Timeout
29%

Correct
59%

Erratic
12%

Error
0%

Gzip

Gzip - High level - Func. call

Error
1%

Erratic
6%

Correct
86%

Timeout
7%

Gzip - Low level - Func. call

Timeout
10%

Correct
74%

Erratic
14%

Error
2%

Figure 5.7 – Results for missing function call.

5.3 Generalisation of G-SWFIT

As one of the goals is to apply the technique to COTS software modules, we may not even
know which compiler or language has been used to produce the executable code. Thus, it is
very important to investigate how the proposed technique can be generalised and ported. The
portability of the proposed technique is dependent on several factors:

a) Use of different compiler optimisation settings

b) Use of different compilers

c) Use of different high-level languages

d) Different host architectures

In practice, what is needed to generalise the technique is to investigate how the factors
mentioned above influence the library of low-level instruction patterns and corresponding
high-level faults. Obviously, once we have a library of faults, the actual use of the technique
is straightforward, as what is needed is to find the pattern and insert the mutations, which is
largely independent on the set-up details.

In order to study the generalisation of G-SWFIT we compiled the synthetic application (the
same of section 5.1) using different optimisation settings, different compilers, target
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architectures, and a different language (i.e., the same application in Pascal) and analyse the
resulting low-level code to check if the instruction patterns initially identified were still
present or if new patterns have to be added to the library. The following subsections discuss
these results.

5.3.1 Different Optimisation Techniques

With respect to different optimisation settings using the same compiler, all possible settings
for the tested compilers (Visual C++, Borland C++, GNU C++, Turbo C++) were evaluated,
including optimising code for speed and for size. It has been observed that different patterns
are generated for a few high-level constructs, depending on the optimising settings used.
However, the conclusion regarding different optimising techniques is that, although some new
low-level instructions patterns have to be considered, none of the new patterns collides with
the existing ones, i.e., no ambiguity raises regarding to which high-level language construct
does a given sequence of low-level instruction relates to. Thus, this issue has the only
consequence of augmenting the library of low-level patterns and corresponding mutations.

5.3.2 Different Compilers

To address the issue of different compiler usage, the low-level code generation of the
following compilers was observed for the C language in the Intel / Windows platform:
Borland C++, Visual C++, Turbo C++, and GNU C++. It is worth noting that the set of
observed compilers encompass both recent and old compilers. The inclusion of older
compiler addresses the usage of legacy COTS and the lack of knowledge about which
compiler was used to produce a given COTS. For all the observed compilers, the code
generation is essentially the same. This is due to the existence of compilation standards.

5.3.3 Different Languages

Both C++ and Pascal languages were considered and experimented. The C++ language
generates essentially the same low-level code as C, when the same kind of high-level
constructs is used. Although Object-oriented constructs were not directly compared, no
ambiguity with the existing patterns was detected. To encompass the new high-level faults
made possible by the expanded syntax of C++, it only needs to augment the library of patterns
and mutations. In the case of Pascal, the resulting low-level code is essentially the same as the
resulting from C language. Some minor differences do exist, for instance in the way that
parameter are passed to functions. However, concerning the patterns used in the case-study,
no interference was noted.

5.3.4 Different Host Architectures

Regarding the issue of different host architecture, the following compilers/platforms were
used: GCC for Linux on a IA32 machine and GCC for OSF Unix over an Alpha AXP.

In the GCC for Linux over IA32 case, the code output is essentially the same as compilers for
Windows over IA32, including the variations caused by different optimisation settings. This
was somewhat expected since the type of the underlying machine is the same. Concerning the
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GCC for OSF Unix over Alpha AXP, the code is totally different. This was to be expected
since there are very few similarities between an Intel 80x86 and an Alpha AXP processor.
Therefore, low-level code must be also different. However, patterns can still be identified and
related with the original high-level constructs. In the case of the Alpha processor there are
specific coding standards, which greatly assist the task of defining low-level instruction
patterns. The generalisation to different architectures is mainly a question of porting to a
different processor, maintaining all the essential aspects of the technique: a library of patterns
and mutations must be defined prior to the injection of emulated faults; the injection itself is
carried out with ported versions of the same tools used in the case study. Furthermore, it can
also be noted that the existing differences between different processors pose no difficulty for
the deployment of this technique since support for different processors families at the same
time (i.e., by the same suite of tools) is not expected to be necessary or even particular useful.

5.3.5 Generalisation Discussion

As a conclusion, the generation of the library of faults (and the technique itself) is mainly
dependent on the target architecture. This means that we need as many libraries of faults as
architectures we want to cover. All the other factors evaluated have also some influence on
the libraries of faults, but this influence consists of having a more or less complete library.
That is, the more compilers and optimisation settings are used, the more complete the library
is.

Another important conclusion concerning DBench goals is that the faultload equivalence
(considering both high-level versus low-level faults and equivalence across different systems
and platforms) has probably to be drawn in statistical terms. The common ground for the
definition of faultloads based on software faults is the high-level (i.e., source code level) fault
classification (assumed to be generic, in spite of the different programming languages) and
the fact that G-SWFIT can be ported across different systems and platforms.

5.4 Conclusions

G-SWFIT technique emulates software faults by selective mutations introduced at
machine-code level. The idea is to find suitable locations for the accurate emulation of
specific high-level languages programming errors that are usually responsible for common
software faults. The key aspects of this technique are a library of low-level instructions
patterns and mutations that relate to specific high-level faults in specific constructs and
structures, and a pre-processing step of the target application to generate a (large) number of
mutants. The execution of each mutant represents the injection of a fault.

Experimental results show that most of the patterns provide good accuracy, while some
provide a not so good but still acceptable accuracy. This suggests that this technique is in fact
a good way to emulate software faults when no source code is available, which is a crucial
goal for DBench. Another strong point of this technique is the fact that it can be fully
automated, which is essential for the definition of dependability benchmark faultloads.

The generalisation and portability of G-SWFIT is mainly dependent on the target architecture
(i.e., the target processor programming model), while aspects such as the compiler
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optimisation settings, different compilers, and language used to program the target application
only influences the size of the library of faults and the effort needed to generate this library.
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6 Operator Faults in Transactional Systems

Considering the three major types of faults addressed in DBench (hardware, software, or
operator faults), available studies clearly point operator faults and software faults as the most
frequent causes for computer failures [Gray 1990, Sullivan & Chirallege 1991, Sullivan &
Chirallege 1992, Lee & Iyer 1995, Velpuri 1995, Kalyanakrishnam et al. 1999, Sunbelt 1999].
This is particularly true for very complex systems with many thousands of lines of code, as it
is notably the case of typical transactional systems.

Previous chapters addressed the emulation of software faults. This chapter discusses the
emulation of operator faults in transactional systems. The great complexity of the
administration of transactional systems (which is clearly dominated by the underlying
database management systems administration) and the need of tuning and administrating the
system in a daily basis, clearly explains why operator faults (i.e., wrong system administrator
actions) are considered the prevalent type of fault in complex transactional systems (even
more important than software faults). Several interviews with database administrators (DBAs)
of real databases installations conducted on behalf of our research work also confirmed the
prevalence of operator faults.

The structure of this chapter is the following: next section presents background on DBMSs,
and Section 6.2 discusses DBMS administration. Section 6.3 discusses the problem of
operator faults in DBMS and presents a comparative analysis of administrator faults in three
different DBMSs. Section 6.3 also proposes some guidelines for the definition of faultloads
based on operator faults. Section 6.4 presents an example of DBMS recovery benchmarking
and Section 6.5 concludes the chapter.

6.1 Background on DBMSs

Most of the transactional systems available today use a database management system as
transactional engine. For that reason, transactional systems are strongly influenced by
database technology, and then it is important to summarise the key concepts on database
systems before discussing the problem of operator faults in transactional systems.

A database is a collection of data describing the activities of one or more related organisations
[Ramakrishnan 1999]7. The software designed to assist in maintaining and using databases is
called database management system, or DBMS. A DBMS allows users to define the data to be
stored in terms of a data model, which is a collection of high-level metadata that hide many
low-level storage details. Most DBMS available today are based on the relational data model,
which was proposed by E. F. Codd in 1970 [Codd 1970, Codd 1990]. The relational data
model is very simple and elegant, and defines a database as a collection of one or more
relations, where each relation is a table with rows and columns. DBMSs based on the

                                                
7 This first paragraph is a condensed view of key definitions presented in chapter 1 of the book

“Database Management Systems”, by R. Ramakrishnan, second edition, McGraw Hill, ISBN 0-07-
232206-3.
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relational data model are frequently called relational database management systems. In the
rest of the chapter we will use the term DBMS to refer to relational database management
systems.

In practice, a typical database application (e.g., banking, insurance companies,
telecommunications, etc) is a client-server system (either a traditional client-server or a three
tier system) where a number of users are connected to a database server via a terminal or a
desktop computer (today the trend is to access database servers through the internet using a
browser). The user’s actions are translated into SQL commands (Structured Query Language:
the relational language used by DBMS [Date & Darwen 1993]) by the client application and
sent to the database server. The results are sent back to the client to be displayed in the
adequate format by the client application.

A very important notion is the concept of transaction [Gray 1990]. In a simplified view, a
transaction is a set of commands that perform a given action and take the database from a
consistent state to another consistent state. Transaction management is an important
functionality of modern DBMSs, and it is directly related to dependability aspects,
particularly in what concerns concurrency control and recovery. Concurrency control is the
activity of coordinating the actions of processes that operate in parallel and access shared
data, and therefore potentially interfere with each other. Recovery assures that faults
(hardware, software, or operator faults) do not corrupt persistent data stored in the database
tables.

In order to correctly deal with concurrency control and recovery, DBMS transactions must
fulfil the following properties: atomicity (either all actions in the transaction are executed or
none are), consistency (the execution of a transaction results in a consistent database state),
isolation (the effects of a transaction must be understood without considering other
concurrently executing transactions), and durability (the effects of a transaction that has been
successfully completed must persist, even when the system has a failure after the transaction
is finished). These properties are known as the ACID properties.

6.2 DBMS Administration

A database administrator (DBA) is responsible for developing and maintaining a database
installation. Typically, a DBA is someone with many years of practice and has a vast
experience with one or more of the major DBMS products, such as Oracle Database Server,
Sybase Adaptive Server, Informix Dynamic Server, and Microsoft SQL Server.

The major DBMS available today are extremely complex and require a regular and
demanding administration. The DBA is responsible for managing all the aspects concerning
the DBMS environment, which makes the list of tasks performed by a database administrator
quite extensive. Although different DBMS have different implementation and functionalities,
administration tasks can be grouped in core areas common to all of them. The following
points summarise those administration areas (each area corresponds to many administration
tasks) and give an idea of the huge complexity of the administration of a database system.

• Memory and processes administration: The main goal is to optimise I/O operations
through the correct definition of the optimal size of the different memory areas,
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particularly the cache and buffer policies. Additionally, database administrator has to
manage a number of different process types and the communications between the database
clients and the server.

• Security management: Security is an important issue in database administration and
requires continuous attention from the DBA. Some typical tasks include adding and
removing users, managing privileges, and monitoring resources utilisation.

• Storage administration: The main goal is to minimise the contention when accessing the
data and the fragmentation in the physical storage of the database objects. Several aspects
have to be managed, such as the replication of some types of files, the distribution of the
files by several disks, and other parameters related to physical space allocation.

• Database objects administration: The database administrator must frequently monitor and
manage the database objects (tables, indexes, etc.) in order to maximise the system
performance. For example, create the adequate indexes, cluster or partition some objects,
and configure space allocation parameters, are some of the important tasks that a DBA has
to execute frequently.

• Recovery mechanisms administration: The tuning of the recovery mechanism is clearly the
most difficult area in database administration. Correctly configure the recovery
mechanisms in order to minimise the recovery time and the lost transactions in a failure
situation is one of the most important database administration aspects. However, it is also
important to conciliate the aspects related to recovery with system performance. The main
goal is to achieve the right balance between system recoverability and performance.

These major areas of administration can be found in any commercial DBMS, as they are
related to core functions available in all DBMS [Ramakrishnan 1999]. Table 6.1 presents the
main administration tasks for each one of these areas (each task can be divided in several
subtasks) for three of the leading DBMS in the market: Oracle 8i, Sybase Adaptive Server
12.5, and Informix Dynamic Server 9.3. The tasks presented are grouped using the
administration areas presented before and have been identified based on field experience on
database administration, the comparative analysis of the administration manuals of the
different products considered, and through discussions and interviews with several database
administrators of real databases installations. Each column shows the administration tasks for
a given DBMS and tasks in the same row are considered equivalent.

Although the details of some administration tasks are specific to each DBMS, the standard
SQL used by the vast majority of DBMS greatly simplifies the establishment of equivalent
tasks in different DBMS implementation. However, some of the tasks are intimately related to
specific features of a given DBMS and do not have counterparts in other DBMS. There are
also some tasks in a DBMS that may correspond to two or more tasks in another DBMS.
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Table 6.1: Administration tasks in different DBMS

Class Oracle 8i Sybase Adaptive Server 12.5 Informix Dynamic Server 9.3

Install and config. the database
server

Install and config. the database
server

Install and config. the database
server

Create Oracle databases
Startup and shutdown Startup and shutdown Startup and shutdown

Manage Oracle processes Manage multiprocessor servers Manage virtual processors and
threads

Configure memory
Manage SGA allocation

Configure data caches
Manage shared memory

Manage job queues
Set database configuration
parameters

Set database configuration
parameters

Set database configuration
parametersM

em
or

y 
an

d 
P

ro
ce

ss
es

A
dm

in
is

tr
at

io
n

Manage client/server
communications

Manage client/server
communications

Manage client/server
communications

Establish security policies Establish security policies Establish security policies
Manage adaptive server logins and
database users

Manage users
Manage users and resources

Limit Access to Server Resources Monitor resources and user activity
Grant and revoke privileges

Manage user privileges and roles Manage user permissions and roles
Create and use roles

Manage remote servers

Se
cu

ri
ty

 M
an

ag
em

en
t

Audit database use Audit Audit

Create and manage user databases
Set database options

Manage databases
Manage tablespaces Create and use segments

Manage tblspaces

Manage datafiles Initialise and mirror database
devices

Manage dbspaces, blobspaces,
sbspaces, and extspaces

Manage rollback segments

Manage temporary segments Manage temporary dbspaces and
temporary sbspaces

St
or

ag
e 

A
dm

in
is

tr
at

io
n

Reorganise space in tables

Manage tables Manage tables Manage tables
Manage performance optimisation
objects

Manage performance optimisation
objects

Manage performance optimisation
objects

Manage other objects Manage other objects Manage other objects

D
B

 O
bj

ec
ts

Manage objects replication

Develop backup and recovery
strategies

Develop backup and recovery plans Develop backup and recovery plans

Manage control files
Manage the online redo log Manage transaction Log Manage logical-log files
Manage archived redo logs Restore system databases Manage the physical log
Perform backups and recovery Backup and restore user databases Perform manual recovery

Manage mirroring
Use high-availability data
replicationR

ec
ov

er
y 

M
ec

ha
ni

sm
s

A
dm

in
is

tr
at

io
n

Check data block corruption Check database consistency Check consistency

6.3 Operator Faults in DBMSs

Operator faults in database systems are database administrator mistakes. End-user errors are
not considered, as the end-user actions do not affect directly the dependability of the system.
In fact, the end-users do not have direct access to the DBMS (e.g., do not execute SQL
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commands, even in user accounts), and they are only allowed to use the database through
well-defined interface applications that isolate them form the DBMS (e.g., an ATM interface
allows the users to perform high-level operations such as withdraw money or check account
balance, and there is no room for user mistakes that affect the system dependability).

As we can see from the list of administration tasks presented in Table 6.1, database
administrators manage all aspects of DBMSs. In spite of constant efforts to introduce self-
maintaining and self-administering features in DBMS, database administration still is a job
heavily based on human operators (and this picture is not likely to change in the near future).
Obviously, administrator mistakes easily hurt DBMS availability, which shows the interest of
benchmarking the behaviour of DBMSs in the presence of these faults.

6.3.1 Classes of Operator Faults

As mentioned before, the list of tasks performed by a DBA is very long. Although some of
those tasks are common to several DBMSs, different database systems have different
possibilities for administration and consequently different sets of possible operator faults.
Thus, we have decided to analyse the main database administration areas and tasks and try to
map them in classes of operator faults common to all DBMSs. Table 6.2 shows the proposed
classes of operator faults (each class of faults corresponds to many types of administrator
mistakes) and gives some examples of faults for each class.

Table 6.2: Classes of DBMS operator faults

Classes of DBMS operator faults Description

Memory and processes administration

Mistakes in the administration of processes and memory structures. Deleting or
corrupting the database initialisation files, defining incorrectly the memory
allocation and processes initialisation parameters are typical faults related to
processes and memory administration. Another typical fault is the accidental
database shutdown that causes the loss of service.

Security management
Mistakes in the attribution of passwords, access privileges, and disk space to
users. These are very problematic faults in database administration, as their
effects are difficult to detect.

Storage administration

Mistakes in the administration of the physical and logical storage structures.
Common examples of this class of faults are: the removal or corruption of
database files, the incorrect distribution of files by several disks, and letting the
storage structures run out of space.

Database object administration

Errors related to the management of the user objects. The removal of a user
object (e.g., table, index, cluster, etc.), the incorrect configuration of the user
objects storage parameters, and the incorrect use of the optimisation structures
(e.g., indexes, clusters, etc.) are common faults related to the database schema
administration.

Recovery mechanisms administration
Mistakes in the configuration and administration of the database recovery
mechanisms. Some typical examples are: the inexistence of backups, the
removal or corruption of a log file, and the inexistence of archive logs.

6.3.2 Comparative Analysis of Administration Faults in Several DBMSs

Operator faults are mistakes made by human operators when executing administration tasks.
Different DBMSs include different sets of administration tasks and consequently have
different sets of possible operator faults. In order to identify the differences and similarities
among different DBMSs concerning operator faults, a comparative analysis has been made to
identify the operator faults associated to each administration task. Tables 6.3, 6.4, and 6.5
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present the list of the administration tasks and respective operator faults types identified for
the three DBMSs shown in Table 6.1, respectively Oracle 8i, Sybase Adaptive Server 12.5,
and Informix Dynamic Server 9.3. Note that a given fault type actually represents many
possible faults (e.g., as a typical database has hundreds of tables there are many possibilities
for deleting a table by mistake).

Table 6.3: Administration tasks and operator faults in Oracle 8i DBMS

Class Administration tasks Operator Fault Types

Create Oracle database Create an Oracle database during peek workload
Startup and shutdown Make a database shutdown inadvertently
Manage Oracle processes Incorrect configuration of the processes parameters
Manage SGA allocation Incorrect configuration of the SGA parameters
Manage job queues Incorrectly set a job to a peek workload time
Set database configuration parameters Incorrect config. the DB parameters; Remove or corrupt the initialisation file

Memory
and

Processes
Admin.

Manage client/ server comm. Incorrect config. of the maximum number of user sessions; Kill a user session

Manage Users and Resources Database access level faults (passwords); Delete a database user; Assign
incorrect profiles to users; Grant incorrect disk space to usersSecurity

Manag.
Manage User Privileges and Roles Incorrect attribution of system privileges to users; Incorrect attribution of

object privileges to users; Incorrect attribution of roles to users

Manage tablespaces Delete a tablespace; Set a tablespace offline; Allow a tablespace to run out of
space

Manage datafiles Delete or corrupt a datafile; Set a datafile offline; Incorrect distribution of
datafiles through disk

Manage rollback segments Delete a rollback segment; Set a rollback segment offline; Insufficient number
of rollback segments; Allow a rollback segment to run out of space

Storage
Admin.

Manage temporary segments Delete a temporary segment; Allow temporary segments to run out of space

Manage tables Delete a table; Incorrect configuration of table’s storage parameters; Setting
NOLOGING option in tables

Manage performance optimisation objects Incorrect use of performance optimisation objects
Manage other objects Delete any database object

DB
Objects
Admin.

Manage objects replication Incorrectly replicate objects

Develop backup and recovery strategies Develop a wrong backup and recovery strategy

Manage control files Delete a control file

Manage the online redo log Delete a redo log file or group; Store all redo log group members in the same
location; Insufficient redo log groups to support archive logs

Manage archived redo logs
Inexistence of archive logs; Delete an archive log file
Store archive log files in the same disk as datafiles

Perform backups and recovery Backups missing to allow recovery; Make a hot backup during peek workload

Recovery
Mechan.
Admin.

Address data block corruption Correct data block corruption during peek workload

As we can see, it is possible to establish equivalence among many operator faults in different
DBMSs. A very important aspect is that very sophisticated DBMSs with many things to
administrate seem to be more prone to operator faults than simpler DBMSs, with only a few
things to administrate (obviously, DBMS with less administration possibilities have limited
tuning possibilities).

The interface of the administration tools is also very important to identify weaknesses in
DBMSs concerning operator faults. Normally a DBMS includes several administration tools.
These tools have two types of interface: graphical interface or SQL command line interface.
In a graphical interface the database administrator executes the administration tasks by
clicking on information boxes and buttons in a graphical environment. The administration
tool translates those actions into SQL commands and submits them to the DBMS. In a SQL
command line interface, the database administrator writes the SQL commands directly.
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Table 6.4: Administration tasks and operator faults in Sybase Adaptive Server 12.5 DBMS

Class Administration Tasks Operator Faults Types

Startup and Shutdown Make a database shutdown inadvertently
Manage Multiprocessors Servers Kill a process; Incorrect configuration of the processes parameters
Configure Memory Incorrect configuration of Memory parameters
Conf. Data Caches Incorrect configuration of Data Caches parameters
Set Database Configuration Parameters Incorrect config. of DB parameters; Remove or corrupt the config. file

Memory
and

Processes
Admin.

Manage Client/ Server Comm. Kill a user session

Manage Logins and Database Users Database access level faults (passwords); Delete a database user
Limit Access to Server Resources Incorrect distribution of resourcesSecurity

Manag.
Manage User Permissions and Roles Incorrect attribution of permissions to users; Incorrect attribution of roles to

users

Create and Manage User Databases Delete a user database
Set Database Options Incorrect configuration of database options
Create and Use Segments Delete a segment
Initialise and Mirror Database Devices Delete or corrupt a database device

Storage
Admin.

Reorganise Space in Tables Reorganise space in table during peek workload

Manage Tables Delete a table
Manage Performance Optimisation Objects Incorrect use of performance optimisation objects

DB
Objects
Admin. Manage Other Objects Delete any database object

Develop Backup and Recovery Strategies Develop a wrong backup and recovery strategy
Manage Transaction Log
Restore System Databases Inexistence of system databases backups

Backup and Restore User Databases Inexistence of user databases backups; Make a user database backup during
peek workload

Recovery
Mechan.
Admin.

Check Database Consistency Check database consistency during peek workload

Table 6.5: Administration tasks and operator faults in Informix Dynamic Server 9.3 DBMS

Class Administration Tasks Operator Faults Types

Startup and Shutdown Make a database shutdown inadvertently
Manage Virtual Processes and Threads Kill a process; Incorrect configuration of the processes parameters
Manage Shared Memory Incorrect configuration of Shared Memory parameters
Set Database Configuration Parameters Incorrect config. of DB parameters; Remove or corrupt the config. file

Memory
&

Processes
Admin.

Manage Client/ Server Comm. Kill a user session

Manage Users Database access level faults (passwords); Delete a user
Monitor Resources and User Activity Incorrect distribution of resources
Grant and Revoke Privileges Incorrect attribution of privileges to users

Security
Manag.

Create and Use Roles Incorrect attribution of roles to users

Manage Databases Delete a Database
Manage Tblspaces Delete or corrupt a Tblspace
Manage Dbspaces, Blobspaces, Sbspaces,
Extspaces Delete or corrupt a Dbspace, Blobspace, Sbspace, or a Extspace

Storage
Admin.

Manage Temporary Dbspaces and Temp.
Sbspaces Delete a Temporary dbspace or a temporary Temporary subspace

Manage Tables Delete a table
Manage Performance Optimisation Objects Incorrect use of performance optimisation objects

DB
Objects
Admin. Manage Other Objects Delete any database object

Develop Backup/ and Recovery Strategies Develop a wrong backup and recovery strategy
Manage Logical-Log Files Delete a logical-log file
Manage the Physical Log Delete a physical log file
Manage Mirroring Incorrectly mirroring of files
Use High-Availability Data Replication Incorrectly replication of files

Recovery
Mechan.
Admin.

Check Consistency Check consistency during peek workload
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A very important aspect concerning administration tools is the existence or not of some kind
of mechanisms to confirm and undo operator tasks [Brown & Patterson 2001]. In tools with a
confirmation mechanism, the operator has to validate each operation (through a commit
command or clicking in a button), which reduces the probability of occurrence of faults. The
undo mechanism is essential and allows to rollback an operation after its execution (nullifying
the fault if it exists). Obviously, it is very difficult to rollback some types of complex
operations, such as deleting a file or deleting relational objects, without using extremely
complex recovery procedures. That is the reason why most of the DBMS do not include undo
facilities as a standard administration mechanism.

6.3.3 Operator Faults Emulation

The injection of operator faults in a DBMS can be easily achieved by reproducing common
database administrator mistakes. That is, operator faults can be injected in the system by using
exactly the same means used in the field by the real database administrator. Using the concept
of “emulation distance” presented in the introduction of this deliverable, our proposal to
emulate operator faults in DBMS is to use “distance zero emulation”. In other words, we do
not emulate faults as it is usual in traditional fault injection: we really reproduce operator
faults.

In order to reproduce an operator fault in a way similar to what happens in real world the set
of steps represented in Figure 6.1 must be followed. A very important aspect concerning the
fault emulation is the instant of activation of the faults (fault trigger). The same fault activated
in different moments may cause different behaviour according to the system state, which
means that different instants for the injection of faults must be chosen (faults can be
uniformly distributed over time or can be synchronised with a specific event or command of
the workload).

Figure 6.1: Steps to emulate an operator fault

The recovery start depends on the time needed to detect the error. However, the operation
faults do not start the recovery process in an automatic way in most of the cases. Thus, the
detection that some administration mistake has been made is normally carried out by the DBA
himself, either because the DBA realise his own mistakes or because it is notified by the end-
users that some functionality has been affected. As the detection time is highly human
dependent, a typical detection time has to be established for benchmark purposes for each
type of operator fault. In practice, the detection time is estimated for each fault based on
previous experience and on the analysis of the possible fault effects. It is worth noting that the
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detection time as shown in Figure 1 also includes the time required for the DBA to understand
the effects of the fault and start the adequate recovery procedure.

Another relevant aspect to automate the experiments is that it is necessary to evaluate the type
of recovery procedure that may be required after each fault. This means that the scripts used
to inject each type of fault must also include all the steps required to start the adequate
recovery procedure, which is much more complex than the actual reproduction of the operator
faults.

6.4 Definition of Faultloads Based on Operator Faults

A faultload is a set of faults or stressful conditions that may affect the system. Two important
aspects have to be considered in the definition of a faultload: fault representativeness and
fault portability. To be useful, a faultload must be representative of real faults and, at the same
time, must define the faults in a way that make them portable (i.e., valid) among the possible
target systems. Concerning operator faults, although some faults are highly system dependent,
the analysis made in the previous sections showed that most of the operator faults can be
found in several DBMSs.

From the functional, the DBMS administration can be defined as a set of core functionalities,
namely: memory and processes, security, storage, database objects, and recovery mechanisms.
These functionalities are equivalent to the administration areas presented in sub-section 6.2. A
possible solution to define a portable faultload is to focus on the high abstraction level that
corresponds to the core functionalities of DBMS administration. This functional abstraction
level corresponds to the set of administration functionalities common to most DBMSs.

To define a faultload based on operator faults, the following set of steps must be followed:

1) Identify the administration tasks for each core administration functionality.

2) Identify the operator fault types that may occur when executing each one of those
administration tasks (in a similar way to tables 6.3, 6.4, and 6.5).

3) Define weights to each fault type according to the number of times the correspondent
administration task is executed (reasonable estimation of the frequency of each fault can be
obtained by field data, using for example real database logs).

4) Define the faultload as the exhaustive list of possible operator faults for all the types
identified. The number of times a given fault type will appear in the faultload depends on
the weights defined and each type must appear at least once.

The reason why we propose an exhaustive list of possible faults (taking into account the list
of administration tasks for the core administration functionalities) is that different systems can
be fairly compared in terms of recoverability if all the possible causes for DBMS recovery are
evaluated in the benchmark. It is worth noting that the limited number of administration tasks
assures that even the exhaustive list of operator faults is within acceptable bounds considering
the number of faults.

It is important to note that some types of faults do not affect the system in a visible way
concerning recovery. An example of these faults is the security class faults. When a DBA
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introduces inadvertently a security fault the system continues to work normally until another
person maliciously take advantage from that to break into the system (this is a second event).
Fault types that need a second event to show up must be treated in a different way.

6.5 Conclusion

This chapter focuses the problem of emulating operator faults for dependability benchmarking
of transactional systems based on a DBMS. A comparative analysis concerning administration
tasks and operator faults in different DBMS is presented and a general classification for
operator faults is proposed. A set of guidelines for the definition of faultloads based on
operator faults for DMBS recovery benchmarking is then proposed based on the core DBMS
administration functionalities.
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7 Conclusion

In this deliverable it has been made an in depth study of fault representativeness from the SW,
HW and operator faults point of view. Such study has been carried out developing conceptual
frameworks to identify the main notions governing the problem of fault representativeness.

The conclusions can be summarised taking into account the context under which they were
obtained:

• Context and classes of fault Addressed: The presence of a specific FTM on a target
system will alter the error propagation path. Assuming a perfect coverage of the FTM the
representativeness of the benchmark using the fault load characterised by the injected
faults could be zero. Because of that fact it has been necessary to introduce a new distance
parameter: the distance separating the level where the faults are injected from the level
where the FTM is acting.

• Fault propagation between logic and RTL abstraction level: From the study of fault
modelling at logic and RTL levels, three main conclusions can be considered:

o Considering transient faults due to cosmic ray radiation, it is necessary to
distinguish between the faults occurred in combinational circuits and in
storage (memory and latches). This differentiation leads to the specification
of pulse fault model, related to combinational circuits (while for storage
circuits it is used the bit-flip model).

o Recent studies point out that in future ICs the likelihood of apparition of
transient faults will increase greatly. Moreover, some fault types that usually
have been neglected (and subsequently not used in fault injection campaigns)
will have an important impact in future technologies. This is the case of
faults in combinational logic (pulse fault model). At higher working
frequencies, the likelihood to latch a combinational fault is going to raise
considerably. Other unconsidered fault models like delay and
indetermination, are going to increase their influence also due to problems
related to high speed working. At high frequencies, skin and Miller effects
will make that delay in ICs will not be constant, originating even time
violations that can lead to indeterminate outputs.

o When studying the propagation of faults in combinational circuits to RTL
level, it has been observed that the number of failures generated by injecting
in hidden (not accessible via software) registers is not negligible. For that
reason, SWIFI techniques should be complemented with another fault
injection technique to access to such registers.

• SW fault representativeness from OS point of view: It has been compared the impact of
three types of SWIFI techniques on the Linux OS (version 2.4.0.)  Two of them target the
kernel call parameters at the API (external faults) and the third one targets the parameters
of the internal functions of the kernel. The results obtained refer to experiments focusing
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on the scheduling and memory components of the kernel. Based on these experiments it
can be stated:

o API-level fault injection is a good candidate to assess kernel robustness.
Flipping bits in kernel call parameters is easy to implement and does not
need any a priori analysis of the parameter data types. However, it requires a
lot of time, as it needs 32 injections per parameter for a 32-bit kernel and
simple data types.

o Applying invalid parameters is eight times faster (for a complete campaign)
compared to a bit-flip campaign, but it needs an a priori analysis of the
kernel call parameters. Also, it presents more advantages compared to bit-
flip technique. As an example, it ensures more error propagation cases.

Concerning the representativeness point of view, we observed that external faults provoked
very distinct behaviours when comparing to those induced by the real internal faults we
considered (device driver faults). In particular, external faults were not able to activate the
assertions based on real faults. This tends to indicate that it is unlikely that device driver
faults could be easily emulated by injecting only at the API level, at least for the Linux
kernel.

On the other hand, faults injected in internal function parameters were found, to some
extent, representative of the considered real faults. Indeed, although the internal function
parameters technique was not able to activate the assertions based on real faults, similar
failure modes were provoked. This shows that the selected type (bit-flip) and location
(interface) of the injected faults are not sufficient to provide a faultload matching the errors
provoked by the considered real faults.

Accordingly, to study the OS robustness with regard to driver faults, in WP3 we will
extend the prototype Benchmark to include the driver interface in addition to the API.

• Software Faults from Application (Language) Point of View.  Because of the inherent
problems of SW faults injection it has been proposed:

o Use of educated mutations to improve the representativeness of the injected
faults as much as possible.

o Use of a new technique to emulate software faults by selective mutations
introduced at the machine-code level.

o Propose of an operating scenario for the injection of software faults in which
faults are injected in one module to evaluate the behaviour of the rest of
the system.

In summary, it has been proposed a new technique for the injection of software faults
called Generic Software Fault Injection Technique (G-SWFIT). G-SWFIT consists of
finding key programming structures at the machine code-level where high-level software
faults can be emulated.

• Operator Faults in Transactional Systems. The great complexity of the administration
of transactional systems and the need of tuning and administrating the system in a daily
basis, clearly explains why operator faults are considered the prevalent type of fault in
complex transactional systems (even more important than software faults). Several
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interviews with database administrators (DBA) of real databases installations conducted on
behalf of our research work also confirmed the prevalence of operator faults. A
comparative analysis concerning administration tasks and operator faults in different
DBMS is presented and a general classification for operator faults is proposed.
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