DBench
Dependability Benchmarking

| ST-2000-25425

Preliminary Dependability Benchmark Framework

Report Version: Deliverable CF2

Report Preparation Date: 30 August 2001

Classification: Public Circulation

Contract Start Date: 1 January 2001

Duration: 36m

Project Co-ordinator: LAAS-CNRS (France)

Partners. Chalmers University of Technology (Sweden), Critical Software (Portugal),
University of Coimbra (Portugal), Friedrich Alexander University, Erlangen-Nirnberg
(Germany), LAAS-CNRS (France), Polytechnical University of Vaencia (Spain).
Sponsor: Microsoft (UK)

Project funded by the European Community
under the “Information Society Technology”
Programme (1998-2002)

Table of Contents

Y 0 1= P 1
S [011 00 (11 oo 2
2 Measuresof Dependabilitycoouiieiiii i 5
2.1 Comprehensive Dependability MEASUIES..........ovieiiiiiiiicei e 6
2.2 Dependability FEAUNES.ouiiri e 8
2.3 Specific Dependability MEASUIES..........ouinieii e 9
2.4 PerformanCeMEBSUIES.ttt 10
2.5 Commentson Measures of Dependability...........ooovveiiiiiiiiiii, 11
3 Dimensions and Boundaries of the Dependability Benchmarking Problem Space 12
3.1 Categorisation DIMENSIONS.uiieteeie e 15
3.2 MEBSUrE DIMENSION ..t 18
3.3 EXPEimMENnt DIMENSIONSuneeeieee ettt ettt 20
G S 110> 1Y/ 23
4. Dependability Benchmarking OVerviewcooviiiiiiiiiiiee, 24
4.1 Dependability Benchmark Conducting and Key Benchmark Components....... 24
4.2 Benchmark Properties ... 31
5. Some Examples of Preliminary Dependability Benchmarks........................... 34
5.1 Dependability Benchmark for Transactional Applications........................... 34
5.2 Dependability Benchmark for Operating Systems...........ccoovvviiiiiiiiinennnns. 39
G 0 o 11 o o 41

REf I ONCES. . . . oo 43

DBench Preliminarily Dependability Benchmark Framework

Preliminary Dependability Benchmark
Framework

Authored by: H. Madeira’™, K. Kanoun*, J. Arlat*, Y. Crouzet*, A. Johansson**

and R. Lindstrom**

With the contribution of: S. Blanc®®, K. Buchacker®, J. Durdes ', P. Gil**, T. Jarboui*,

J-C Laprie*, J. J. Serrano® ®, J. G. Silva’", N. Suri** and M. Vieira' "

* LAAS ** Chamers T FCTUC *FAU ** UPVLC

August 30, 2001

Abstract

The goa of dependability benchmarking is to provide generic ways of characterisng the
behaviour of components and computer systems in the presence of faults, allowing for the
guantification of dependability measures. Beyond existing evauation techniques,
dependability benchmarking must provide a uniform, repeatable and cost-effective way of
performing this evauation either as stand alone assessment or more often for comparative
evaluation across systems. This document presents the preliminary framework proposed by
the DBench project to investigate, define, and validate dependability benchmarks for
computer systems, with particular emphasis on COTS-based systems and COTS
components. The multiple dimensions of the problem are discussed and the framework is
presented through a set of dependability benchmarking scenarios, ranging from pure
experimental approaches to benchmarking scenarios where modelling and experimentation
are tightly coupled. The main problems and research goas behind each benchmarking
scenario are discussed and two concrete examples of preliminary dependability benchmarks
already under investigation are presented.

DBench Preliminarily Dependability Benchmark Framework

1 Introduction

A key driver for computer systems has been the provision of performance and its consequent
ability to provide for enhanced functionality. However, the performance related features of a
system are meaningful only if the services can be provided in a dependable manner. As we
become more and more dependent on computing systems, the impact of these systems failing
also grows — in terms of nuisance vaue and in terms of the cost impact of lack of service
delivery. Consequently, the provision of dependability becomes a key aspect for the system
performance to be meaningful. Unfortunately, while there are relatively straightforward and
well-established ways to evauate and compare performance of different systems or
components, the evaluation of dependability features is a considerably more intricate process,
as in addition to the characterisation of the behaviour of the system under normal operational
conditions, the system has also to be characterised under faulty conditions.

The use of Commercial Off-The-Shelf (COTS) components in a wide range of computer
systems, including systems used in mission-critical and business-critical applications, is
another growing trend. System designers perceive COTS as an opportunity to reduce
development costs and deployment times. Additionally, COTS normally benefit from a large
installation base in a multitude of configurations, which is often treated as effective field-
testing. However, in spite of these advantages, COTS are usually not designed for stringent
requirements of safety or service critical systems. Thus, it becomesimportant to have means to
measure the impact of use of COTS in the computer dependability in general and particularly in
business-critical and mission-critical systems.

It iswell known that evaluation of dependability featuresis acomplex task. First, the measures
for dependability are inherently complex and dependent on a multitude of external aspects, such
as the operationa environment and particularly human aspects related to the maintenance and
use of computer systems. Even the validation of very specific error handling mechanisms such
as error detection and recovery mechanisms, which are relatively minor parts of the overall
dependability evaluation, is traditionaly a challenging task. Furthermore, the notion that
functionality and performance are related to dependability is an established facet, as many
systems operate often in degraded modes or with reduced performance due to faults or other
unavoidable upsets. Operating in degraded modes is usually desirable, though it complicates
even further the notion of defining and measuring dependability.

Given the huge complexity involved in the design of a computer system (hardware, operating
system, application software, user interface, etc.), there is no single generalised approach for
dependability evaluation and validation. Instead, several methods have been used, ranging
from pure modelling and analytical techniques to simulation and experimental approaches based
on fault injection and robustness testing [Kanoun et al. 1997, Folkesson & Karlsson 1998,
Sinha & Suri 1999, Koopman & DeVde 1999, Costa et al. 2000]. Most of these techniques
have been developed for mission-critical systems or for the high-end business-critical area, and
thus make assumptions about design or operating environment that affect their direct porting to
more mainstream computing systems.

DBench Preliminarily Dependability Benchmark Framework

The goal of benchmarking the dependability of systems is thus to provide generic ways of
characterising the behaviour of components and computer systems in the presence of faults,
allowing for the quantification of dependability measures. Beyond existing experimental
techniques, such as fault injection and robustness testing, dependability benchmarking must
provide a uniform, repeatable and cost-effective way of performing this evauation either as
stand alone assessment or more often for comparative evaluation across systems. In practice, a
dependability benchmark must include a precise specification of the dependability measures to
be taken, a detailled specification of al the procedures and steps required to obtain the
benchmark measures (which may include programs source code, scripts, specification
language texts, etc.), and the domain in which these measures are valid and meaningful.

Computer benchmarking is primarily based on experimental approaches. As an experiment, its
acceptability islargely based on two salient facets of the experimental method: 1) the ability to
reproduce the observations and the measurements, either on a deterministic or on a statistical
basis, and 2) the capability of generdizing the results through some form of inductive
reasoning (although the generalization is often limited by many factors). The first aspect (ability
to reproduce) gives confidence in the benchmark results and the second (ability to generalize)
makes the benchmark results meaningful and useful beyond the specific set up used in the
benchmark process.

In practice, benchmark results are normally reproducible on a datistical basis.! On the other
hand, the necessary generalisation of the results is inherently related to the representativeness
of the experiments. The notion of representativeness is manifold and touches aimost dl the
aspects of benchmarking, as it really means that the measures and the conditions used to obtain
those measures are representative of what can be found in the real world.

The key aspect that distinguishes benchmarking from existing evaluation and validation
techniquesisthat a benchmark fundamentally represents an agreement (explicit or tacit) that is
accepted by the computer industry and by the user community. This technica agreement (the
benchmark) states the measures, the way the measures are obtained, and the domain (e.g.,
application ared) in which these measures are valid and meaningful. In other words, a red
benchmark is something that the user community and the computer industry accept as
representative enough of a given application domain to be deemed useful and to be generaly
used as away of measuring specific features of a computer system and, consequently, away to
compare different systems.

The concept of benchmarking can then be summarised in three words: representativeness,
usefulness, and agreement. A benchmark must be as representative as possible of a given
domain but, as an abstraction of that domain, it will aways be an imperfect representation of
reality. However, the objective is to find a useful representation that captures the essential
elements of the given domain and provides practical ways to characterise the computer features
that help the vendorg/integrators to improve their products and help the users in their purchase
decisions. In this context, the god of the DBench project is to advance fundamental aspects

1 Eveninsimple performance benchmarks, results such as peak performance are difficult to repeat exactly
in successive benchmark experiments, and the benchmark result represents normally the best result
achieved in the conditions specified by the benchmark procedures.

DBench Preliminarily Dependability Benchmark Framework

related to the representativeness and usefulness of dependability benchmarks, and to creste the
technical conditions for the establishment of actual dependability benchmarks that can be
accepted and used by the computer industry and the user community.

Dependability benchmarking, as a specific form of benchmarking of computer systems,
inherits the basic characteristics of benchmarking discussed above. Unfortunately, while
classical benchmarking related to performance and functionality is relatively straightforward,
the characterisation of dependability features is much more difficult. In fact, as mentioned
before, the assessment of dependability attributes adds several layers of complexity to the
problem. For example, the relevant measurements necessary to portrait system or component
dependability are complex, and become even more complex when the operation in degraded
modes or with reduced performance in the presence of faults is considered. The
representativeness of the experimental steps required to assess dependability related measures
is a very complex problem, and the need of using modelling techniques to evaluate basic
dependability attributes such as availability and reliability is something completely new in the
benchmarking context.

The success of well-established performance benchmarks in comparing performance of
components and computer systems probably accounts for the generalised idea that the goal of
benchmarks is to compare systems based on benchmark results. Although the comparison of
dependability aspects of different alternatives is one of the goas of the dependability
benchmarking effort, we would like to emphasise that the DBench project addresses many
other goas for dependability benchmarks. Clearly, the key objective of dependability
benchmarking is to contribute to improve computer system dependability. This central objective
entails multiple perspectives for the use of future dependability benchmarks, ranging from end-
user to the system developer perspective, and will be materialised in DBench through the
definition of dependability benchmarks for the following specific objectives:

o Identify mafunctioning or less robust parts requiring more attention and perhaps
needing improvements by tuning a particular component to enhance its dependability
(e.g., by using wrapping), or tuning the system architecture (by adding fault tolerance
mechanisms or spare units, for example) to ensure an appropriate dependability level.

o Assess the dependability of a component or a system.
o Compare, grade or rank the dependability of alternative or competitive solutions.

Benchmarks are normally targeted to well defined application areas or to specific types of
systems. Thisisapractical attitude to cope with the huge diversity of applications and systems
in the computer industry. However, in spite of this inevitable diversity, we believe that
different dependability benchmarks should share a common framework. This framework must
define dl the key components of a dependability benchmark and the general approach of
benchmarking for dependability. In this context, an actua dependability benchmark is just an
instantiation of this general framework to a specific application domain or to a particular kind of
computer system or component.

The advantages of defining this preliminarily dependability benchmark framework at the
beginning are manifold:

DBench Preliminarily Dependability Benchmark Framework

o Définition of al key dimensions that characterise different types of dependability
benchmarks.

o ldentification of the key components and the basic methods that characterise any
dependability benchmark.

« Definition of dependability benchmarking concepts and common vocabulary to be used
along the project.

« Identification of the pointsin the problem space that should be chosen as initid target of
the dependability benchmarking research.

« Definition of additional experiments required to better understand the problem and to
assess the technol ogies to be used in dependability benchmarking.

It is expected that the outputs of dependability benchmarks will be based on some dependability
benchmark measures, evaluated under specific conditions. Therefore, an important task in
benchmark definition concerns the identification of meaningful dependability benchmark
measures. This is also the reason why we devoted an entire chapter (Chapter 2) to the
presentation of dependability measuresin a structured manner.

The structure of this document is as follows?: the next chapter presents the dependability
measures. Chapter 3 presents the dimensions of the dependability benchmarking and discusses
possible choices that define the boundaries of the problem in the context of DBench. Chapter 4
presents the framework through a set of dependability benchmarking scenarios and discuss the
main problems and research goals behind each benchmarking scenario. Chapter 5 proposes
preliminary dependability benchmarks examples aready under investigation in DBench.
Conclusions are presented in Chapter 6.

2 Measures of Dependability

The dependability characteristics of a system or a component can be expressed in a qualitative
manner (in terms of attributes and specific features giving the system capacities and properties)
or in terms of quantitative measures. The am of this chapter is to present examples of
attributes, features and measures that can be used to characterise the dependability of a system
or a component.

As the occurrence or activation of faults in a system may lead to performance degradation
without leading to system failure, dependability and performance are strongly related. Thus,
the evaluation of system performance under faulty conditions, in addition to dependability
measures, will dlow characterisng completely the system behaviour from the dependability
point of view. We will thus address performance measures under faulty conditions.

Dependability is an integrative concept that encompasses the following basic attributes
[Laprie 1995, Avizienis, 2001]:

2 The state-of-the-art on dependability assessment, robustness and performance benchmarks is given in a
separate deliverable, CF1 [CF1 2001].

DBench Preliminarily Dependability Benchmark Framework

» Availability: readinessfor correct service.

» Rédiability: continuity of correct service.

» Sdafety: absence of catastrophic consequences on the user(s) and the environment.
» Confidentiality: absence of unauthorised disclosure of information.

* Integrity: absence of improper system state alterations.

» Maintainability: ability to undergo repairs and modifications.

Several other dependability attributes have been defined that are either combinations or
specidisations of the six basic attributes listed above. Security is the concurrent existence of
a) availability for authorised users only, b) confidentiality, and c¢) integrity with ‘improper’
taken as meaning ‘ unauthorised’. Dependability with respect to erroneous inputs is referred to
as robustness.

The attributes of dependability may be emphasised to a greater or lesser extent depending on
the application: availability is always required, athough to a varying degree, whereas
reliability, safety and confidentiality may or may not be required.

The extent to which a system possesses the attributes of dependability should be interpreted in
a relative, probabilistic sense, and not in an absolute, deterministic sense. due to the
unavoidable presence or occurrence of faults, systems are never totaly available, reliable, safe,
or secure.

The evaluation of these attributes leads to view them as measures of dependability. The
associated measures are referred to as comprehensive dependability measures as i) they
characterise the service delivered by the target system, ii) they take into account al events
impacting its behaviour and their consequences and iii) they address the system in a global
manner, even though the notion of system and component is recursive and a system may be a
component of another system.

It isworth noting that all measures given in this chapter may not be relevant for al systems and
users, but they can dl be found on many lists of user concerns and establish the generd
premise of benchmarks.

In the following sections we first provide examples of comprehensive measures, then examine
specific system features together with their associated specific measures and finadly we address
related performance measures.

2.1 Comprehensive Dependability Measures

Comprehensive measures characterise a system or acomponent in a global manner, addressing
the service delivery level and taking into account the occurrence of the various events impacting
its behaviour.

Definitions of reliability, availability, maintainability and safety as measures of dependability
aregivenin Table 2.1 [Laprie 1995, Avizienis, 2001].

DBench Preliminarily Dependability Benchmark Framework

Reliability measures the continuous delivery of correct service or,
equivalently, the timeto failure.

Availability measures the ddlivery of correct service with respect to
the aternation of correct and incorrect service.

Maintainability measures the time to service restoration since the
last failure occurrence, or equivalently, measures the continuous
delivery of incorrect service.

Safety: when the state of correct service and the states of incorrect
service due to non-catastrophic failure are grouped into a safe state (in
the sense of being free from catastrophic damage, not from danger).
Safety measures the continuous safeness, or equivaently, the time to
catastrophic failure. As ameasure, safety is thus reliability with respect
to catastrophic failures.

Table 2.1: Comprehensive dependability measures

The above measures could be evauated from direct observation of system behaviour.
However, a long observation period or a large number of systems are needed to obtain
statistically significant numbers related to measures such as system availability or mean time to
failure. Usually, comprehensive measures are obtained based on modelling.

Indeed, dependability modelling based on Markov chains and Petri nets has been established as
an efficient methodology for evauating the comprehensive dependability measures, even
before system deployment. Dependability modelling requires the knowledge of the following:

» System functions and structure.

o System nominal and degraded operationa modes, system failure modes, as well as
component failure modes.

» The most significant error detection and fault-tolerance capabilities.

» Maintenance facilities (e. g., on-line repair and backup possibilities, maintenance policy and
maintenance duration).

» System evolution capacities (e.g., possibility of on-line upgradability and detection of
inconsi stent upgrades).

Information related to the three first points are obtained from system analysis with the support
of the system constructor.

Information related to maintenance can be obtained from the system constructor and from the
system owner (as the knowledge of the environment of system utilisation is usually required).

Information related to system evolution could be obtained from system constructor and from
experimentation.

For modelling purposes, the above sets of information are expressed in terms of event
occurrence rates and conditional probabilities. Events refer for example to fault occurrence and

DBench Preliminarily Dependability Benchmark Framework

activation, error propagation and system repair or restart. Conditional probabilities are usually
related to system behaviour after event occurrence. For example, if the event is fault occurrence
and activation, the conditional probabilities describe the reaction of the system to faults (i.e.,
probability of error detection, probability of error containment or probability of error recovery).

Problems related to model construction and processing are discussed in the companion state-of-
the art document [CF1 2001] and will not be examined further in this document. It is worth
noting that some assumptions have to be made to construct manageable models. Sensitivity
analysis with respect to these assumptions is essentia to check their validity as well as their
impact on the results.

The evaluation of dependability measures based on the constructed system model entails
additionally the knowledge of the numerica values of the model parameters (event rates and
conditional probabilities). From apractical point of view:

« Fault occurrence and activation rates are generaly obtained from field measurement
related to the same system if it is aready in operation or, most probably, from similar
previous systems that have already been in operation for along time.

« Conditiona probabilities can be obtained from experimentation: either from field data or
from controlled experiments, whenever possible.

When the parameter values are not available, approximate values can be attributed in a first
step. Sendtivity anayses alow identification of the most salient ones for the considered
measure(s), to be evaluated from experimentation.

2.2 Dependability Features

Attributes and comprehensive measures allow the characterisation of a system or a component
in a globa manner (at the service delivery level, taking into account al events impacting its
behaviour and their consequences). However, for several reasons, it may be interesting to
characterise only specific aspects of system behaviour without necessarily taking into account
all the processes impacting its globa behaviour and without addressing the service delivery
level (i.e., characterise the system fault tolerance capabilities or its maintenance and evolution
capacities individually). This is done through the study of what we refer to as dependability
features.

Without being exhaustive, Table 2.2 illustrates the kind of features that can be considered
individualy. Indeed, a particular system may have a subset of the features given in Table 2.2
as well as other features that are consdered to be important for that particular system. For
example, features such as extendibility, scalability and modularity may be considered as
essential for a system, even though they are not directly related to dependability, but they may
impact system dependability.

DBench Preliminarily Dependability Benchmark Framework

Error detection, error containment and system recovery:
- Detection / recovery of permanent hardware and/or software faults
- Detection / recovery of transient hardware and/or software faults
- Detection / recovery of successive faults
- Error containment (avoidance of error propagation)
- On-line fault diagnosis
- Protection against operational errors (accidental / intentional)
- Failure modes

- Recovery after power failure

Maintenance and evolution:
- On-linerepair
- On-line backup
- On-line upgradability (new release)
- Detection of inconsistent upgrade

Table 2.2: Example of dependability features

The list of features is provided in a generic manner, and each feature has to be specified
precisely to characterise the dependability of a system. For instance, one has to specify the
exact nature and location of errors that are detected, contained (whose effects are confined) or
tolerated. For example, a system may be tolerant to hardware faults without being tolerant to
software faults. The failure modes should be specified and defined clearly in the context of the
particular application. In particular, for some systems, correct output values delivered too late
with respect to system specifications are considered as leading to a system failure. Moreover,
some systems can be designed and implemented so that they fail only in specific and controlled
modes of failure. Such systems are fail-controlled systems. When failures are halting failures
only, to an acceptable extent, the system is considered as a fail-halt or a fall-slent system;
when failures are al minor ones, to an acceptable extent, the system is considered as a fail-safe
system.

Features are suitable for describing qualitatively the dependability of a system. However, in
order to have an accurate knowledge about the system behaviour, features should be completed
by quantitative information. In particular, one has to know to which extent these features are
fulfilled. This leads to associate to each feature one or more specific dependability
measur es that should be quantified to better describe it.

2.3 Specific Dependability Measures

Table 2.3 illustrates examples of specific measures that can be associated with the features
listed in Table 2.2. These measures should be defined accurately in order to be useful. As
happen with the features, one hasto precise the nature of errors that are detected, contained or
covered.

DBench Preliminarily Dependability Benchmark Framework

As can be seen, most of the features are characterised by their efficiency. Efficiency has two
complementary dimensions. i) a time dimension corresponding to the duration of the
considered action (error detection, recovery or containment, fault diagnosis and system repair)
and ii) a conditional probability of success of an action provided it has been initiated (also
referred to as coverage or coverage factor). For example fault diagnosis coverage is defined as
the probability that a fault is correctly diagnosed given the fact that an error is detected.
However, for some systems, action duration or action coverage may have more impact and
emphasis may thus be put only on the most influential dimension of efficiency.

Error detection, error containment and system recovery:
- Error detection efficiency
- Error recovery efficiency
- Probability of detection/recovery of successive faults
- Error containment efficiency
- Fault diagnosing efficiency
- Efficiency of detection/recovery of operationa errors
- Failure modes (quantification of %)
- Efficiency of recovery after power failure

Maintenance and evolution
- Repair efficiency
- Time to restart the system
- Time to system back-up
- Timeto upgrade, probability of detection of inconsistent upgrade

Table 2.3: Example of specific system dependability measures

The variety and number of measures show the complexity of dependability characterisation.
Each measure characterises one side of the multi-faceted problem. However, the system can be
globally characterised by combining the most salient specific measures into a globa model to
evaluate appropriate comprehensive dependability measures as in Section 2.1. The various
measures are represented by parameters in the model. A further step would be to associate
numerical values to these measures/parameters.

2.4 Performance Measures

Classica performance measures include measures such as system response time and system
throughput. These measures are evaluated based on anayticd models, smulation models or
measurements. As for dependability measures, measurements are possible only if the system
under study does exit while analytica modelling and ssmulation can be used for situations
where measurement is not possible.

10

DBench Preliminarily Dependability Benchmark Framework

Table 2.4 gives the definition of response time and throughput as defined in [Jain, 1991]. In
computer systems shared by many users, the response time and throughput may be measured
for each user aswell as for the whole set of users.

Response time is defined as the interval between a user's request and the
system response, assuming that the request and the response ae
instantaneous. Taking into account the request time and time for outputting
the response leads to two different definitions:

- The response time is the interval between the end of a request and the
beginning of the corresponding response from the system.

- Theresponse timeis the interval between the end of a request and the end
of the corresponding response from the system.

Throughput is defined as the rate (requests per unit of time) at which the
reguests can be serviced by the system.

Some examples. For CPUs, the throughput is measured in Millions of
Instructions Per Second (MIPS) or Millions of Floating-Point Operations
Per Seconds (MFLOPS). For transactional processing systems, the
throughput is measured in Transactions Per Second (TPS).

Table 2.4: Performance measures

Indeed, the performance evauation allows the characterisation of system behaviour with
respect to the additional fault tolerance mechanisms and in presence of faults. For example,
some fault tolerance mechanisms may have a very high coverage factor with a large time
overhead in normal operation. It is interesting to evauate such time overhead. Concerning the
system behaviour in presence of faults, following fault occurrence or fault activation, either the
system fails or a correct response is provided (correct value, delivered on time). Indeed, a
correct value delivered too late with respect to the system specification is to be considered as a
failure. Thiscan be considered as a specific failure mode.

In case of acorrect response, the system performance may be affected by the presence of errors
in the system. The evaluation of the response time and throughput measures alows the
characterisation the system performance in presence of faults. The performance
measure definitions given in Table 2.4 sill hold, but it is assumed that these measures are
obtained in presence of faults.

2.5 Comments on Measures of Dependability

Previous sections presented the various dependability attributes and features and their
associated measures that allows characterisation of the dependability a system or a component
aswell as performance measures. We have distinguished two kinds of dependability measures:
comprehensive and specific measures. Comprehensive measures characterise the system
globally at the service delivery level, taking into account al events impacting its behaviour and

11

DBench Preliminarily Dependability Benchmark Framework

their consequences. Specific measures characterise particular aspects of a system or a
component: behaviour in presence of fault, maintenance and evolution. Comprehensive
measures are usually evauated based on anadyticad modelling. Some of the specific measures
maly appear as parameters in the anaytical model.

It isworth mentioning that as the notion of system is recursive (as stated in the introduction of
this chapter), the concepts of comprehensive and specific features are applicable at the system
and component levels. However, when considering software components, COTS or not,
emphasis is usually placed on specific dependability measures rather than on comprehensive
dependability measures. The most salient dependability features are those related to error
detection, containment and recovery, and failure modes. As an example Table 2.5 shows the
dependability features of an operating system. Also, robustnessis a commonly used feature for
characterisng an operating system. Robustness characterises the operating system reaction
with respect to erroneous inputs (e.g., illegal Operating System calls).

Error detection, containment and recovery:
- Detection / recovery of hardware faults
- Detection / recovery of middlieware / application software faults
- Detection / recovery of its one faults
- Error containment (or error propagation channels)
- Failure modes
- Recovery after power failure

Table 2.5: Example of an operating system dependability features

When considering the system level, we have implicitly assumed a locally distributed system,
with well-defined boundaries and a limited number of dependability measures. When
considering largely distributed systems of systems as for web-based applications, the definition
of dependability measures may be more complex as well as the analyticd modelling of such
systems. However, a hierarchical anaytical modelling approach can be used as in [Kaaniche,
2001] to master the model complexity. The number of parameters may be larger as specific
features and measures can be considered (see e.g., [Labovitz et al. 1999]), but the principles
described in this section are still applicable.

Finally, measures obtained experimentally require measurements on the target system. Hence
the need for the definition of an appropriate workload and possibly an appropriate set of faults
to beinjected in the system, referred to as faultload in the rest of this report. The selection of
the right workload and faultload is mandatory to obtain significant results.

3 Dimensions and Boundaries of the Dependability
Benchmarking Problem Space

Dependability benchmarking is an n-dimensional problem space. The definition of a framework
for dependability benchmarking requiresfirst of all the identification and clear understanding of
al the dimensions of the problem. Then, defining the framework corresponds to making

12

DBench Preliminarily Dependability Benchmark Framework

choicesfor the different dimensions and characterising all the key components of dependability
benchmarks. In this sense, different frameworks for different flavours of dependability
benchmarking can co-exist and the options assumed in the preliminary framework represent
just the starting point of the project research. Refinementsin the framework (or even dternative
dependability benchmark frameworks) may be considered during the course of the project.

Although benchmarking the process of creating® a computer system or component could be
conceivable (in fact, the 1ISO 9000 series of standards are based on the idea of certifying
processes), the DBench approach is to benchmark actual products via experimentation and
modelling. The idea of benchmarking a product versus benchmarking the process of creating a
product is a key first dimension of the problem, and the focus on product benchmarking
represents a key decision for DBench. By benchmarking actual computer products we will
bring the end-user perspective to the benchmark results, while we also encompass the indirect
evaluation of product development phases, through the characterisation of the developed
product. In addition to the end-user, who is mainly interested in dependability benchmarking
focusing the operational phase of the computer systems (which includes the actua use of the
system, maintenance actions, and system evolution and upgrading), benchmarking is also very
relevant for the system developers and integrators, asit provides them with means to select the
best components or the best system configurations.

As stated before, a dependability benchmark can be represented by a well-defined set of
dependability measures and a detailed specification of all the procedures, methods, tools, and
steps required to obtain these measures. In this sense, the measure dimension is the most
important one, as it defines what is expected from a dependability benchmark. However, in
order to understand the problem space and to define the boundaries of the research work in
DBench we aso have to take into account dl the other dimensions of dependability
benchmarking. To facilitate this discussion we organise the presentation of the dimensions in
four groups, namely categorisation dimensions, measure dimension, experiment dimensions
and property dimensions.

o Categorisation dimensions — These dimensions characterise the dependability
benchmarks and naturally define a set of different benchmark categories. In practice, we
have as many dependability benchmark categories as possible combinations of the
categorisation dimensions (although only some combinations are actudly useful). The
presentation of these dimensionsin first place allows us to focus the discussion of the other
dimensions, as these dimensions define in practice the genera bounds of the problem.
Obvioudly, the product versus the process benchmarking is the very first categorisation
dimension, but given the fact that DBench only considers product benchmarking, it is not
necessary to include this dimension in the discussion anymore. Thus, the categorisation
dimensionsinclude:

= Benchmark usage — identifies the different perspectives for running dependability
benchmarks and using the benchmark results. This is in fact a composite dimension

3 We use “create’ to designate al the complex chain of processes (from specification to product
deployment) that result in an actual computer system or component.

13

DBench Preliminarily Dependability Benchmark Framework

including sub-dimensions such as benchmark performer, benchmark user, results use,
and results scope (see Section 3.1.1).

= Life cycle phase - identifies the phase in the product life that will be addressed in the
benchmark.

= Application area — identifies the application area defined with the adequate granularity
(specificity).

= Target system - defines the target system and/or the target component that will be
subject to measures.

Measure dimension — The selection of dependability benchmarking measure(s) to be
assessed depends on the choices made for the categorisation dimensions. The measures of
dependability have aready been presented in Chapter 2 and, in this section, we discuss
particular aspects induced by the benchmarking context.

Experiment dimensions — Once defined the main sets of measures that can be obtained
from a dependability benchmark, we discuss the dimensions related to the experiments on
the target system required to get the measures and the base data needed to compute the
dependability measures (this computation can range from simple calculations to complex
modelling). The experiment dimensions are:

= QOperating environment - typical environment for an application area and the way it
affects the benchmark.

= Workload - defines a working profile that should be representative of an application
area.

= Faultload - definesthe set of upsets, stressful conditions and faults that could affect the
system.

= Procedures and rules - defines the procedures and the rules to perform the
benchmarking (this includes more than just the aspects directly related to the
experimental steps of benchmarking).

Property dimensions — The dimensions mentioned above include al the asp